
NAG C Library Function Document

nag_opt_nlp_sparse (e04ugc)

1 Purpose

nag_opt_nlp_sparse (e04ugc) solves sparse nonlinear programming problems.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_nlp_sparse (

void (*confun)(Integer ncnln, Integer njnln, Integer nnzjac, const double x[],
double conf[], double conjac[], Nag_Comm *comm),

void (*objfun)(Integer nonln, const double x[], double *objf, double objgrad[],
Nag_Comm *comm),

Integer n, Integer m, Integer ncnln, Integer nonln, Integer njnln,
Integer iobj, Integer nnz, double a[], const Integer ha[], const Integer ka[],
double bl[], double bu[], double xs[], Integer *ninf, double *sinf,
double *objf, Nag_Comm *comm, Nag_E04_Opt *options, NagError *fail)

3 Description

nag_opt_nlp_sparse (e04ugc) is designed to solve a class of nonlinear programming problems that are
assumed to be stated in the following general form:

minimize
x2Rn

f xð Þ subject to l �
x

F xð Þ
Gx

8<
:

9=
; � u, ð1Þ

where x ¼ x1; x2; . . . ; xnð ÞT is a set of variables, f xð Þ is a smooth scalar objective function, l and u are
constant lower and upper bounds, F xð Þ is a vector of smooth nonlinear constraint functions Fi xð Þf g and G
is a sparse matrix.

The constraints involving F and Gx are called the general constraints. Note that upper and lower bounds
are specified for all variables and constraints. This form allows full generality in specifying various types
of constraint. In particular, the jth constraint can be defined as an equality by setting lj ¼ uj. If certain
bounds are not present, the associated elements of l or u can be set to special values that will be treated as
�1 or þ1. (See the description of the optional parameter inf_bound in Section 11.2).

nag_opt_nlp_sparse (e04ugc) converts the upper and lower bounds on the m elements of F and Gx to

equalities by introducing a set of slack variables s, where s ¼ s1; s2; . . . ; smð ÞT. For example, the linear
constraint 5 � 2x1 þ 3x2 � þ1 is replaced by 2x1 þ 3x2 � s1 ¼ 0, together with the bounded slack
5 � s1 � þ1. The problem defined by (1) can therefore be re-written in the following equivalent form:

minimize
x2Rn;s2Rm

f xð Þ subject to
F xð Þ
Gx

� �
� s ¼ 0, l � x

s

� �
� u. ð2Þ

Since the slack variables s are subject to the same upper and lower bounds as the elements of F and Gx,
the bounds on F and Gx can simply be thought of as bounds on the combined vector x; sð Þ. The elements
of x and s are partitioned into basic, nonbasic and superbasic variables defined as follows (see Section 10
for more details):

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.1

A basic variable is a variable associated with a column of a square non-singular basis matrix B.

A nonbasic variable is a variable that is temporarily fixed at its current value (usually its upper or
lower bound).

A superbasic variable is a non basic variable which is not at one of its bounds and which is free to
move in any desired direction (namely one that will improve the value of the objective function or
reduce the sum of infeasibilities). At each step, basic variables are adjusted depending on the values
of superbasic variables.

For example, in the simplex method (see Gill et al. (1981)) the elements of x can be partitioned at each
vertex into a set of m basic variables (all non-negative) and a set of n� mð Þ nonbasic variables (all zero).
This is equivalent to partitioning the columns of the constraint matrix as B j Nð Þ, where B contains the m
columns that correspond to the basic variables and N contains the n� mð Þ columns that correspond to the
nonbasic variables.

The optional parameter direction (default value direction ¼ Nag_Minimize) may be used to specify an
alternative problem in which f xð Þ is maximized (setting direction ¼ Nag_Maximize), or to only find a
feasible point (setting direction ¼ Nag_FeasiblePoint). If the objective function is nonlinear and all the
constraints are linear, F is absent and the problem is said to be linearly constrained. In general, the
objective and constraint functions are structured in the sense that they are formed from sums of linear and
nonlinear functions. This structure can be exploited by the function during the solution process as follows.

Consider the following nonlinear optimization problem with four variables u; v; z;wð Þ:

minimize
u;v;z;w

uþ vþ zð Þ2 þ 3zþ 5w

subject to the constraints

u2 þ v2 þ z ¼ 2
u4 þ v4 þ w ¼ 4

2uþ 4v � 0

and to the bounds

z � 0
w � 0

.

This problem has several characteristics that can be exploited by the function:

the objective function is nonlinear. It is the sum of a nonlinear function of the variables u; v; zð Þ and
a linear function of the variables z;wð Þ;
the first two constraints are nonlinear. The third is linear;

each nonlinear constraint function is the sum of a nonlinear function of the variables u; vð Þ and a
linear function of the variables z;wð Þ.

The nonlinear terms are defined by the user-supplied subroutines objfun and confun (see Section 5),
which involve only the appropriate subset of variables.

For the objective, we define the function f u; v; zð Þ ¼ uþ vþ zð Þ2 to include only the nonlinear part of the
objective. The three variables u; v; zð Þ associated with this function are known as the nonlinear objective
variables. The number of them is given by nonln (see Section 5), and they are the only variables needed
in objfun. The linear part 3zþ 5w of the objective is stored in row iobj (see Section 5) of the (constraint)
Jacobian matrix A (see below).

Thus, if x0 and y0 denote the nonlinear and linear objective variables, respectively, the objective may be re-
written in the form

f x0
� �

þ cTx0 þ dTy0,

where f x0
� �

is the nonlinear part of the objective and c and d are constant vectors that form a row of A. In

this example, x0 ¼ u; v; zð Þ and y0 ¼ w.

Similarly for the constraints, we define a vector function F u; vð Þ to include just the nonlinear terms. In this

example, F1 u; vð Þ ¼ u2 þ v2 and F2 u; vð Þ ¼ u4 þ v4, where the two variables u; vð Þ are known as the

e04ugc NAG C Library Manual

e04ugc.2 [NP3660/8]

nonlinear Jacobian variables. The number of them is given by njnln (see Section 5), and they are the
only variables needed in confun. Thus, if x00 and y00 denote the nonlinear and linear Jacobian variables,
respectively, the constraint functions and the linear part of the objective have the form

F x00
� �

A2y
00

A3x
00 A4y

00

� �
, ð3Þ

where x00 ¼ u; vð Þ and y00 ¼ z;wð Þ in this example. This ensures that the Jacobian is of the form

A ¼ J x00
� �

A2

A3 A4

� �

where J x00
� �

¼
@F x00

� �
@x

. Note that J x00
� �

always appears in the top left-hand corner of A.

The inequalities l1 � F x00
� �

þ A2y
00 � u1 and l2 � A3x

00 þ A4y
00 � u2 implied by the constraint functions in

(3) are known as the nonlinear and linear constraints, respectively. The nonlinear constraint vector F x00
� �

in (3) and (optionally) its partial derivative matrix J x00
� �

are set in confun. The matrices A2, A3 and A4

contain any (constant) linear terms. Along with the sparsity pattern of J x00
� �

they are stored in the arrays
a, ha and ka (see Section 5).

In general, the vectors x0 and x00 have different dimensions, but they must always overlap, in the sense that
the shorter vector should always be the beginning of the other. In the above example, the nonlinear
Jacobian variables u; vð Þ are an ordered subset of the nonlinear objective variables u; v; zð Þ. In other cases
it could be the other way round. Note that in some cases it might be necessary to add variables to x0 or x00

(whichever is the most convenient), but the first way keeps J x00
� �

as small as possible. Thus, the nonlinear

objective function f x0
� �

may involve either a subset or superset of the variables appearing in the nonlinear

constraint functions F x00
� �

, and nonln � njnln (or vice-versa). Sometimes the objective and constraints
may really involve disjoint sets of nonlinear variables. In such cases the variables should be ordered so
that nonln > njnln and x0 ¼ x00; x000

� �
, where the objective is nonlinear in just the last vector x000. The first

njnln elements of the gradient array objgrad (corresponding to x00) should then be set to zero in objfun.
This is illustrated in Section 9.

If there are no nonlinear constraints in (1) and f xð Þ is linear or quadratic, then it may be simpler and/or
more efficient to use nag_opt_sparse_convex_qp (e04nkc) to solve the resulting linear or quadratic
programming problem, or one of nag_opt_lp (e04mfc), nag_opt_lin_lsq (e04ncc) or nag_opt_qp (e04nfc)
if G is a dense matrix. If the problem is dense and does have nonlinear constraints, then nag_opt_nlp
(e04ucc) should be used instead.

You must supply an initial estimate of the solution to (1), together with versions of objfun and confun that
define f x0

� �
and F x00

� �
, respectively, and as many first partial derivatives as possible. Note that if there are

any nonlinear constraints, then the first call to confun will precede the first call to objfun.

nag_opt_nlp_sparse (e04ugc) is based on the SNOPT package described in Gill et al. (1997), which in turn
utilizes routines from the MINOS package (see Murtagh and Saunders (1995)). It incorporates a sequential
quadratic programming (SQP) method that obtains search directions from a sequence of quadratic
programming (QP) subproblems. Each QP subproblem minimizes a quadratic model of a certain
Lagrangian function subject to a linearization of the constraints. An augmented Lagrangian merit function
is reduced along each search direction to ensure convergence from any starting point. Further details can
be found in Section 10.

Throughout this document the symbol � is used to represent the machine precision (see
nag_machine_precision (X02AJC)).

4 References

Conn A R (1973) Constrained optimization using a nondifferentiable penalty function SIAM J. Numer.
Anal. 10 760–779

Eldersveld S K (1991) Large-scale sequential quadratic programming algorithms PhD Thesis Department
of Operations Research, Stanford University, Stanford

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.3

Fletcher R (1984) An l1 penalty method for nonlinear constraints Numerical Optimization 1984 (ed P T
Boggs, R H Byrd and R B Schnabel) 26–40 SIAM Philadelphia

Fourer R (1982) Solving staircase linear programs by the simplex method Math. Programming 23 274–313

Gill P E, Murray W and Saunders M A (1997) SNOPT: An SQP Algorithm for Large-scale Constrained
Optimization Numerical Analysis Report 97–2 Department of Mathematics, University of California, San
Diego

Gill P E, Murray W and Saunders M A (2002) SNOPT: An SQP Algorithm for Large-scale Constrained
Optimization 12 979–1006 SIAM J. Optim.

Gill P E, Murray W, Saunders M A and Wright M H (1986c) Users’ guide for NPSOL (Version 4.0): a
Fortran package for nonlinear programming Report SOL 86-2 Department of Operations Research,
Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1989) A practical anti-cycling procedure for linearly
constrained optimization Math. Programming 45 437–474

Gill P E, Murray W, Saunders M A and Wright M H (1992) Some theoretical properties of an augmented
Lagrangian merit function Advances in Optimization and Parallel Computing (ed P M Pardalos) 101–128
North Holland

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Hock W and Schittkowski K (1981) Test Examples for Nonlinear Programming Codes. Lecture Notes in
Economics and Mathematical Systems 187 Springer–Verlag

Murtagh B A and Saunders M A (1995) MINOS 5.4 Users’ Guide Report SOL 83-20R Department of
Operations Research, Stanford University

Ortega J M and Rheinboldt W C (1970) Iterative Solution of Nonlinear Equations in Several Variables
Academic Press

Powell M J D (1974) Introduction to constrained optimization Numerical Methods for Constrained
Optimization (ed P E Gill and W Murray) 1–28 Academic Press

5 Arguments

1: confun – function, supplied by the user External Function

confun must calculate the vector F xð Þ of nonlinear constraint functions and (optionally) its Jacobian

(¼ @F

@x
) for a specified njnln � nð Þ element vector x. If there are no nonlinear constraints (i.e.,

ncnln ¼ 0), confun will never be called by nag_opt_nlp_sparse (e04ugc) and the NAG defined null
void function pointer, NULLFN, can be supplied in the call to nag_opt_nlp_sparse (e04ugc). If there
are nonlinear constraints, the first call to confun will occur before the first call to objfun.

Its specification is:

void confun (Integer ncnln, Integer njnln, Integer nnzjac, const double x[],
double conf[], double conjac[], Nag_Comm *comm)

1: ncnln – Integer Input

On entry: the number of nonlinear constraints. These must be the first ncnln constraints in
the problem.

2: njnln – Integer Input

On entry: the number of nonlinear variables. These must be the first njnln variables in the
problem.

e04ugc NAG C Library Manual

e04ugc.4 [NP3660/8]

3: nnzjac – Integer Input

On entry: the number of non-zero elements in the constraint Jacobian. Note that nnzjac
will always be less than, or equal to, ncnln� njnln.

4: x½njnln� – const double Input

On entry: x, the vector of nonlinear Jacobian variables at which the nonlinear constraint
functions and/or all available elements of the constraint Jacobian are to be evaluated.

5: conf½ncnln� – double Output

On exit: if comm ! flag ¼ 0 or 2, conf ½i� 1� must contain the value of Fi xð Þ, the ith
nonlinear constraint at x.

6: conjac½nnzjac� – double Output

On exit: if comm ! flag ¼ 1 or 2, conjac must return the available elements of J xð Þ, the
constraint Jacobian evaluated at x. These elements must be stored in conjac in exactly the
same positions as implied by the definitions of the arrays a, ha and ka described below,
remembering that J xð Þ always appears in the top left-hand corner of A. Note that the
function does not perform any internal checks for consistency (except indirectly via the
optional parameter verify_grad), so great care is essential.

If all elements of the constraint Jacobian are known, i.e., the optional parameter
con_deriv ¼ NagTrue (the default), any constant elements of the Jacobian may be
assigned to a at the start of the optimization if desired. If an element of conjac is not
assigned in confun, the corresponding value from a is used. See also the description for a
below.

If con_deriv ¼ NagFalse, then any available partial derivatives of ci xð Þ must be assigned
to the elements of conjac; the remaining elements must remain unchanged. It must be
emphasized that, in that case, unassigned elements of conjac are not treated as constant;
they are estimated by finite differences, at non-trivial expense.

7: comm – Nag_Comm *

Pointer to a structure of type Nag_Comm; the following members are relevant to confun.

flag – Integer Input/Output

On entry: confun is called with comm ! flag set to 0, 1 or 2.

If comm ! flag ¼ 0 then only conf has to be referenced.

If comm ! flag ¼ 1 then only conjac has to be referenced.

If comm ! flag ¼ 2 then both conf and conjac are referenced.

On exit: if confun resets comm ! flag to �1, nag_opt_nlp_sparse (e04ugc) will
terminate with the error indicator NE_CANNOT_CALCULATE, unless this
occurs during the linesearch; in this case, the linesearch will shorten the step and try
again. If confun resets comm ! flag to a value smaller or equal to �2, then
nag_opt_nlp_sparse (e04ugc) will terminate immediately with the error indicator
NE_USER_STOP. In both cases, if fail is supplied to nag_opt_nlp_sparse
(e04ugc), fail.errnum will be set to the user’s setting of comm ! flag.

first – Nag_Boolean Input

On entry: will be set to Nag_True on the first call to confun and Nag_False for all
subsequent calls. This parameter setting allows the user to save computation time if
certain data must be read or calculated only once.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.5

last – Nag_Boolean Input

On entry: will be set to Nag_True on the last call to confun and Nag_False for all
other calls. This parameter setting allows the user to perform some additional
computation on the final solution.

user – double *
iuser – Integer *
p – Pointer

The type Pointer is void *.

Before calling nag_opt_nlp_sparse (e04ugc) these pointers may be allocated
memory by the user and initialized with various quantities for use by confun when
called from nag_opt_nlp_sparse (e04ugc).

Note: confun should be tested separately before being used in conjunction with nag_opt_nlp_sparse
(e04ugc). The optional parameters verify_grad and major_iter_lim can be used to assist this process
(see Section 11.2). The array x must not be changed by confun.

If confun does not calculate all of the Jacobian constraint elements then the optional parameter
con_deriv should be set to Nag_False.

2: objfun – function, supplied by the user External Function

objfun must calculate the nonlinear part of the objective f xð Þ and (optionally) its gradient (¼ @f

@x
)

for a specified nonln � nð Þ element vector x. If there are no nonlinear objective variables (i.e.,
nonln ¼ 0), objfun will never be called by nag_opt_nlp_sparse (e04ugc) and the NAG defined null
void function pointer, NULLFN, can be supplied in the call to nag_opt_nlp_sparse (e04ugc).

Its specification is:

void objfun (Integer nonln, const double x[], double *objf, double objgrad[],
Nag_Comm *comm)

1: nonln – Integer Input

On entry: the number of nonlinear objective variables. These must be the first nonln
variables in the problem.

2: x½nonln� – const double Input

On entry: the vector x of nonlinear variables at which the nonlinear part of the objective
function and/or all available elements of its gradient are to be evaluated.

3: objf – double * Output

On exit: if comm ! flag ¼ 0 or 2, objfun must set objf to the value of the nonlinear part
of the objective function at x. If it is not possible to evaluate the objective function at x,
then objfun should assign �1 to comm ! flag; nag_opt_nlp_sparse (e04ugc) will then
terminate, unless this occurs during the linesearch; in this case, the linesearch will shorten
the step and try again.

4: objgrad½nonln� – double Output

On exit: if comm ! flag ¼ 1 or 2, objgrad must return the available elements of the

gradient
@f

@x
evaluated at the current point x.

If the optional parameter obj_deriv ¼ NagTrue (the default), all elements of objgrad
must be set; if obj_deriv ¼ NagFalse, any available elements of the Jacobian matrix must
be assigned to the elements of objgrad; the remaining elements must remain unchanged.

e04ugc NAG C Library Manual

e04ugc.6 [NP3660/8]

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

flag – Integer Input/Output

On entry: objfun is called with comm ! flag set to 0, 1 or 2.

If comm ! flag ¼ 0 then only objf has to be referenced.

If comm ! flag ¼ 1 then only objgrad has to be referenced.

If comm ! flag ¼ 2 then both objf and objgrad are referenced.

On exit: if objfun resets comm ! flag to �1, then nag_opt_nlp_sparse (e04ugc)
will terminate with the error indicator NE_CANNOT_CALCULATE, unless this
occurs during the linesearch; in this case, the linesearch will shorten the step and try
again. If objfun resets comm ! flag to a value smaller or equal to �2, then
nag_opt_nlp_sparse (e04ugc) will terminate immediately with the error indicator
NE_USER_STOP. In both cases, if fail is supplied to nag_opt_nlp_sparse
(e04ugc) fail.errnum will then be set to the user’s setting of comm ! flag.

first – Nag_Boolean Input

On entry: will be set to Nag_True on the first call to objfun and Nag_False for all
subsequent calls. This parameter setting allows the user to save computation time if
certain data must be read or calculated only once.

last – Nag_Boolean Input

On entry: will be set to Nag_True on the last call to objfun and Nag_False for all
other calls. This parameter setting allows the user to perform some additional
computation on the final solution.

nf – Integer Input

On entry: the number of evaluations of the objective function; this value will be
equal to the number of calls made to objfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer is void *.

Before calling nag_opt_nlp_sparse (e04ugc) these pointers may be allocated
memory by the user and initialized with various quantities for use by objfun when
called from nag_opt_nlp_sparse (e04ugc).

Note: objfun should be tested separately before being used in conjunction with nag_opt_nlp_sparse
(e04ugc). The optional parameters verify_grad and major_iter_lim can be used to assist this process
(see Section 11.2). The array x must not be changed by objfun.

If the function objfun does not calculate all of the Jacobian elements then the optional parameter
obj_deriv should be set to Nag_False.

3: n – Integer Input

On entry: n, the number of variables (excluding slacks). This is the number of columns in the full
Jacobian matrix A.

Constraint: n � 1.

4: m – Integer Input

On entry: m, the number of general constraints (or slacks). This is the number of rows in A,
including the free row (if any; see iobj below). Note that A must contain at least one row. If your

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.7

problem has no constraints, or only upper and lower bounds on the variables, then you must include
a dummy ‘free’ row consisting of a single (zero) element subject to ‘infinite’ upper and lower
bounds. Further details can be found under the descriptions for iobj, nnz, a, ha, ka, bl and bu
below.

Constraint: m � 1.

5: ncnln – Integer Input

On entry: the number of nonlinear constraints. These correspond to the leading ncnln rows of A.

Constraint: 0 � ncnln � m.

6: nonln – Integer Input

On entry: the number of nonlinear objective variables. If the objective function is nonlinear, the
leading nonln columns of A belong to the nonlinear objective variables. (See also the description
for njnln below.)

Constraint: 0 � nonln � n.

7: njnln – Integer Input

On entry: the number of nonlinear Jacobian variables. If there are any nonlinear constraints, the
leading njnln columns of A belong to the nonlinear Jacobian variables. If nonln > 0 and
njnln > 0, the nonlinear objective and Jacobian variables overlap. The total number of nonlinear
variables is given by �n ¼ max nonln; njnlnð Þ.
Constraints:

if ncnln ¼ 0, njnln ¼ 0;
if ncnln > 0, 1 � njnln � n.

8: iobj – Integer Input

On entry: if iobj > ncnln, row iobj of A is a free row containing the non-zero elements of the linear
part of the objective function.

If iobj ¼ 0, there is no free row.

If iobj ¼ �1, there is a dummy ‘free’ row.

Constraints:

if iobj > 0, ncnln < iobj � m;
iobj � �1 otherwise.

9: nnz – Integer Input

On entry: the number of non-zero elements in A (including the Jacobian for any nonlinear
constraints, J). If iobj ¼ �1, set nnz ¼ 1.

Constraint: 1 � nnz � n�m.

10: a½nnz� – double Input/Output

On entry: the non-zero elements of the Jacobian matrix A, ordered by increasing column index.
Note that elements with the same row and column index are not allowed. Since the constraint
Jacobian matrix J x00

� �
must always appear in the top left-hand corner of A, those elements in a

column associated with any nonlinear constraints must come before any elements belonging to the
linear constraint matrix G and the free row (if any; see iobj above).

In general, A is partitioned into a nonlinear part and a linear part corresponding to the nonlinear
variables and linear variables in the problem. Elements in the nonlinear part may be set to any
value (e.g., zero) because they are initialized at the first point that satisfies the linear constraints and
the upper and lower bounds. If the optional parameter con_deriv ¼ NagTrue (the default), the
nonlinear part may also be used to store any constant Jacobian elements. Note that if confun does

e04ugc NAG C Library Manual

e04ugc.8 [NP3660/8]

not define the constant Jacobian element conjac½i�, the missing value will be obtained directly from
the corresponding element of a. The linear part must contain the non-zero elements of G and the
free row (if any). If iobj ¼ �1, set a½0� ¼ �, say, where �j j < bigbnd and bigbnd is the value of

the optional parameter inf_bound (default value ¼ 1020). Elements with the same row and column
indices are not allowed. (See also the descriptions for ha and ka below.)

On exit: elements in the nonlinear part corresponding to nonlinear Jacobian variables are
overwritten.

11: ha½nnz� – const Integer Input

On entry: ha½i� must contain the row index of the non-zero element stored in a½i�, for
i ¼ 0; 1; . . . ; nnz� 1. The row indices for a column may be supplied in any order subject to the
condition that those elements in a column associated with any nonlinear constraints must appear
before those elements associated with any linear constraints (including the free row, if any). Note
that confun must define the Jacobian elements in the same order. If iobj ¼ �1, set ha½0� ¼ 1.

Constraint: 1 � ha½i� � m, for i ¼ 0; 1; . . . ; nnz� 1.

12: ka½nþ 1� – const Integer Input

On entry: ka½j� 1� must contain the index in a of the start of the jth column, for j ¼ 1; 2; . . . ; n. To
specify the jth column as empty, set ka½j� ¼ ka½j� 1�. Note that the first and last elements of ka
must be such that ka½0� ¼ 0 and ka½n� ¼ nnz. If iobj ¼ �1, set ka½j� ¼ 1 for j ¼ 1; 2; . . . ;n.

Constraints:

ka½0� ¼ 0;
ka½j� 1� � 0, for j ¼ 2; 3; . . . ;n;
ka½n� ¼ nnz;
0 � ka½j� � ka½j� 1� � m, for j ¼ 1; 2; . . . ;n.

13: bl½nþm� – double Input/Output
14: bu½nþm� – double Input/Output

On entry: bl must contain the lower bounds l and bu the upper bounds u, for all the variables and
general constraints, in the following order. The first n elements of bl must contain the bounds on
the variables x, the next ncnln elements the bounds for the nonlinear constraints F xð Þ (if any) and
the next m� ncnlnð Þ elements the bounds for the linear constraints Gx and the free row (if any).
To specify a non-existent lower bound (i.e., lj ¼ �1), set bl½j� 1� � �inf_bound, and to specify a
non-existent upper bound (i.e., uj ¼ þ1), set bu½j� 1� � inf_bound, where inf_bound is one of

the optional parameters (default value 1020, see Section 11.2). To specify the jth constraint as an
equality, set bl½j� 1� ¼ bu½j� 1� ¼ �, say, where �j j < inf_bound. Note that the lower bound
corresponding to iobj 6¼ 0 must be set to �1 and stored in bl½nþ iobjj j � 1�; similarly, the upper
bound must be set to þ1 and stored in bu½nþ iobjj j � 1�.
On exit: the elements of bl and bu may have been modified internally, but they are restored on exit.

Constraints:

bl½j� � bu½j�, for j ¼ 0; 1; . . . ; nþm� 1;
if bl½j� ¼ bu½j� ¼ �, �j j < inf_bound;
if ncnln < iobj � m or iobj ¼ �1, bl½nþ iobjj j � 1� � �inf_bound and
bu½nþ iobjj j � 1� � inf_bound.

15: xs½nþm� – double Input/Output

On entry: xs½j� 1�, for j ¼ 1; 2; . . . ; n must contain the initial values of the variables, x. In addition,
if a ‘warm start’ is specified by means of the optional parameter start (see Section 11.2) the
elements xs½nþ i� 1�, for i ¼ 1; 2; . . . ;m must contain the initial values of the slack variables, s.

On exit: the final values of the variables and slacks x; sð Þ.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.9

16: ninf – Integer * Output

On exit: the number of constraints that lie outside their bounds by more than the value of the
optional parameter minor_feas_tol (default value ¼

ffiffi
�

p
).

If the linear constraints are infeasible, the sum of the infeasibilities of the linear constraints is
minimized subject to the upper and lower bounds being satisfied. In this case, ninf contains the
number of elements of Gx that lie outside their upper or lower bounds. Note that the nonlinear
constraints are not evaluated.

Otherwise, the sum of the infeasibilities of the nonlinear constraints is minimized subject to the
linear constraints and the upper and lower bounds being satisfied. In this case, ninf contains the
number of elements of F xð Þ that lie outside their upper or lower bounds.

17: sinf – double * Output

On exit: the sum of the infeasibilities of constraints that lie outside their bounds by more than the
value of the optional parameter minor_feas_tol (default value ¼

ffiffi
�

p
).

If the linear constraints are infeasible, sinf contains the sum of the infeasibilities of the linear
constraints. Otherwise, sinf contains the sum of the infeasibilities of the nonlinear constraints.

18: objf – double * Output

On exit: the value of the objective function at the final iterate.

19: comm – Nag_Comm * Input/Output

On entry/on exit: structure containing pointers for communication to the user-supplied functions
objfun and confun; see the description of objfun and confun for details. If the user does not need
to make use of this communication feature the null pointer NAGCOMM_NULL may be used in the call
to nag_opt_nlp_sparse (e04ugc); comm will then be declared internally for use in calls to user-
supplied functions.

20: options – Nag_E04_Opt * Input/Output

On entry/on exit: a pointer to a structure of type Nag_E04_Opt whose members are optional
parameters for nag_opt_nlp_sparse (e04ugc). These structure members offer the means of adjusting
some of the parameter values of the algorithm and on output will supply further details of the
results. A description of the members of options is given below in Section 11. Some of the results
returned in options can be used by nag_opt_nlp_sparse (e04ugc) to perform a ‘warm start’ (see the
optional parameter start in Section 11.2).

If any of these optional parameters are required then the structure options should be declared and
initialized by a call to nag_opt_init (e04xxc) and supplied as an argument to nag_opt_nlp_sparse
(e04ugc). However, if the optional parameters are not required the NAG defined null pointer,
E04_DEFAULT, can be used in the function call.

21: fail – NagError * Input/Output

The NAG error parameter, see the Essential Introduction.

5.1 Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be controlled by
the user with the structure members print_level, minor_print_level, and print_80ch (see Section 11.2 and
Section 11.3). The default setting of print_level ¼ Nag_Soln_Iter, print_80ch ¼ NagTrue, and
minor_print_level ¼ Nag_NoPrint provides a single line of output at each iteration and the final result.
This section describes the default printout produced by nag_opt_nlp_sparse (e04ugc).

The following line of summary output (� 80 characters) is produced at every major iteration. In all cases,
the values of the quantities printed are those in effect on completion of the given iteration.

e04ugc NAG C Library Manual

e04ugc.10 [NP3660/8]

Maj is the major iteration count.

Mnr is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Mnr will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 10).

Step is the step taken along the computed search direction. On reasonably well-behaved
problems, the unit step will be taken as the solution is approached.

Merit function is the value of the augmented Lagrangian merit function (6) at the current iterate. This
function will decrease at each iteration unless it was necessary to increase the penalty
parameters (see Section 10.2). As the solution is approached, Merit function will
converge to the value of the objective function at the solution.

In elastic mode (see Section 10.2), the merit function is a composite function involving
the constraint violations weighted by the value of the optional parameter elastic_wt
(default value ¼ 1:0 or 100.0).

If there are no nonlinear constraints present, this entry contains Objective, the value
of the objective function f xð Þ. In this case, f xð Þ will decrease monotonically to its
optimal value.

Feasibl is the value of rowerr, the largest element of the scaled nonlinear constraint residual
vector defined in the description of the optional parameter major_feas_tol. The
solution is regarded as ‘feasible’ if Feasibl is less than (or equal to) the
major_feas_tol (default value ¼

ffiffi
�

p
). Feasibl will be approximately zero in the

neighbourhood of a solution.

If there are no nonlinear constraints present, all iterates are feasible and this entry is
not printed.

Optimal is the value of maxgap, the largest element of the maximum complementarity gap
vector defined in the description of the optional parameter major_opt_tol. The
Lagrange multipliers are regarded as ‘optimal’ if Optimal is less than (or equal to) the
optional parameter major_opt_tol (default value ¼

ffiffi
�

p
). Optimal will be

approximately zero in the neighbourhood of a solution.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian (not
printed if ncnln and nonln are both zero). It is the square of the ratio between the
largest and smallest diagonal elements of an upper triangular matrix R. This

constitutes a lower bound on the condition number of the matrix RTR that
approximates the reduced Hessian. The larger this number, the more difficult the
problem.

PD is a two-letter indication of the status of the convergence tests involving the feasibility
and optimality of the iterates defined in the descriptions of the optional parameters
major_feas_tol and major_opt_tol. Each letter is T if the test is satisfied, and F
otherwise. The tests indicate whether the values of Feasibl and Optimal are
sufficiently small. For example, TF or TT is printed if there are no nonlinear
constraints present (since all iterates are feasible).

M is printed if an extra evaluation of objfun and confun was needed in order to define an
acceptable positive-definite quasi-Newton update to the Hessian of the Lagrangian.
This modification is only performed when there are nonlinear constraints present.

m is printed if, in addition, it was also necessary to modify the update to include an
augmented Lagrangian term.

s is printed if a self-scaled BFGS (Broyden–Fletcher–Goldfarb–Shanno) update was
performed. This update is always used when the Hessian approximation is diagonal,
and hence always follows a Hessian reset.

S is printed if, in addition, it was also necessary to modify the self-scaled update in order
to maintain positive-definiteness.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.11

n is printed if no positive-definite BFGS update could be found, in which case the
approximate Hessian is unchanged from the previous iteration.

r is printed if the approximate Hessian was reset after 10 consecutive major iterations in
which no BFGS update could be made. The diagonal elements of the approximate
Hessian are retained if at least one update has been performed since the last reset.
Otherwise, the approximate Hessian is reset to the identity matrix.

R is printed if the approximate Hessian has been reset by discarding all but its diagonal
elements. This reset will be forced periodically by the values of the optional
parameters hess_freq (default value ¼ 99999999) and hess_update (default value
¼ 20). However, it may also be necessary to reset an ill-conditioned Hessian from
time to time.

l is printed if the change in the variables was limited by the value of the optional
parameter major_step_lim (default value ¼ 2:0). If this output occurs frequently
during later iterations, it may be worthwhile increasing the value of major_step_lim.

c is printed if central differences have been used to compute the unknown elements of
the objective and constraint gradients. A switch to central differences is made if either
the linesearch gives a small step, or x is close to being optimal. In some cases, it may
be necessary to re-solve the QP subproblem with the central difference gradient and
Jacobian.

u is printed if the QP subproblem was unbounded.

t is printed if the minor iterations were terminated because the number of iterations
specified by the value of the optional parameter minor_iter_lim (default value ¼ 500)
was reached.

i is printed if the QP subproblem was infeasible when the function was not in elastic
mode. This event triggers the start of nonlinear elastic mode, which remains in effect
for all subsequent iterations. Once in elastic mode, the QP subproblems are associated
with the elastic problem (8) (see Section 10.2). It is also printed if the minimizer of
the elastic subproblem does not satisfy the linearized constraints when the function is
already in elastic mode. (In this case, a feasible point for the usual QP subproblem
may or may not exist.)

w is printed if a weak solution of the QP subproblem was found.

The final printout includes a listing of the status of every variable and constraint.

The following describes the printout for each variable.

Variable gives the name of the variable. If the optional parameter crnames ¼ NULL, a default
name is assigned to the jth variable for j ¼ 1; 2; . . . ; n. Otherwise, the name supplied
in crnames½j� 1� is assigned to the jth variable.

State gives the state of the variable (LL if nonbasic on its lower bound, UL if nonbasic on its
upper bound, EQ if nonbasic and fixed, FR if nonbasic and strictly between its bounds,
BS if basic and SBS if superbasic).

A key is sometimes printed before State to give some additional information about
the state of a variable. Note that unless the optional parameter scale_opt ¼ 0 (default
value ¼ 1 or 2) is specified, the tests for assigning a key are applied to the variables
of the scaled problem.

A Alternative optimum possible. The variable is nonbasic, but its reduced gradient
is essentially zero. This means that if the variable were allowed to start moving
away from its current value, there would be no change in the value of the
objective function. The values of the basic and superbasic variables might
change, giving a genuine alternative solution. The values of the Lagrange
multipliers might also change.

D Degenerate. The variable is basic, but it is equal to (or very close to) one of its
bounds.

e04ugc NAG C Library Manual

e04ugc.12 [NP3660/8]

I Infeasible. The variable is basic and is currently violating one of its bounds by
more than the value of the optional parameter minor_feas_tol (default value
¼

ffiffi
�

p
).

N Not precisely optimal. The variable is nonbasic. Its reduced gradient is larger
than the value of the optional parameter major_feas_tol (default value ¼

ffiffi
�

p
).

Value is the value of the variable at the final iterate.

Lower Bound is the lower bound specified for the variable. None indicates that
bl½j� 1� � �inf_bound.

Upper Bound is the upper bound specified for the variable. None indicates that
bu½j� 1� � inf_bound.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if State is FR.
If x is optimal, the multiplier should be non-negative if State is LL, non-positive if
State is UL, and zero if State is BS or SBS.

Residual is the difference between the variable Value and the nearer of its (finite) bounds
bl½j� 1� and bu½j� 1�. A blank entry indicates that the associated variable is not
bounded (i.e., bl½j� 1� � �inf_bound and bu½j� 1� � inf_bound).

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, n replaced by m, crnames½j� 1�) replaced by crnames½nþ j� 1�,
bl½j� 1� and bu½j� 1� replaced by bl½nþ j� 1� and bu½nþ j� 1� respectively, and with the following
change in the heading:

Constrnt gives the name of the general constraint.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

6 Error Indicators and Warnings

NE_CANNOT_CALCULATE

The objective and/or constraint functions could not be calculated.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.
This exit occurs if the user sets comm ! flag to a negative value in objfun or confun. If fail is
supplied the value of fail.errnum will be the same as the user’s setting of comm ! flag.

NE_CON_DERIV_ERRORS

Subroutine confun appears to be giving incorrect gradients.
The user-provided derivatives of the nonlinear constraint functions computed by confun appear to
be incorrect. Check that confun has been coded correctly and that all relevant elements of the
nonlinear constraint Jacobian have been assigned their correct values.

NE_OBJ_DERIV_ERRORS

Subroutine objfun appears to be giving incorrect gradients.
The user-provided derivatives of the objective function computed by objfun appear to be incorrect.
Check that objfun has been coded correctly and that all relevant elements of the objective gradient
have been assigned their correct values.

NE_2_INT_ARG_CONS

On entry, njnln ¼ valueh i while ncnln ¼ valueh i. These parameters must satisfy njnln ¼ 0 when
ncnln ¼ 0.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.13

NE_2_INT_OPT_ARG_CONS

On entry, obj_check_start ¼ valueh i while obj_check_stop ¼ valueh i. These parameters must
satisfy obj_check_start � obj_check_stop.
(Note that this error may only occur when verify_grad ¼ Nag_CheckObj or Nag_CheckObjCon.)

NE_3_INT_ARG_CONS

On entry, ncnln ¼ valueh i, iobj ¼ valueh i and m ¼ valueh i. These parameters must satisfy
ncnln < iobj � m when iobj > 0.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_ARRAY_CONS

The contents of array ka are not valid.
Constraint: ka½0� ¼ 0.

NE_BAD_PARAM

On entry, parameter crash had an illegal value.

NE_BOUND

The lower bound for variable valueh i (array element bl½ valueh i�) is greater than the upper bound.

NE_BOUND_EQ

The lower bound and upper bound for variable valueh i (array elements bl½ valueh i� and bu½ valueh i�)
are equal but they are greater than or equal to inf_bound.

NE_BOUND_EQ_LCON

The lower bound and upper bound for linear constraint valueh i (array element bl½ valueh i� and
bu½ valueh i�) are equal but they are greater than or equal to inf_bound.

NE_BOUND_EQ_NLCON

The lower bound and upper bound for nonlinear constraint valueh i (array element bl½ valueh i� and
bu½ valueh i�) are equal but they are greater than or equal to inf_bound.

NE_BOUND_LCON

The lower bound for linear constraint valueh i (array element bl½ valueh i�) is greater than the upper
bound.

NE_BOUND_NLCON

The lower bound for non-linear constraint valueh i (array element bl½ valueh i�) is greater than the
upper bound.

NE_DUPLICATE_ELEMENT

Duplicate sparse matrix element found in row valueh i, column valueh i.

NE_INT_ARG_LT

On entry, n must not be less than 1: n ¼ valueh i.

NE_INT_ARRAY_1

Value valueh i given to ka½ valueh i� not valid. Correct range for elements of ka is � 0.

e04ugc NAG C Library Manual

e04ugc.14 [NP3660/8]

NE_INT_ARRAY_2

Value valueh i given to ha½ valueh i� is not valid. Correct range for elements of ha is 1 to m.

NE_INT_OPT_ARG_GT

On entry, obj_check_start ¼ valueh i.
Constraint: obj_check_start � nonln.
(Note that this error may only occur when verify_grad ¼ Nag_CheckObj or Nag_CheckObjCon.)

NE_INT_OPT_ARG_LT

On entry, factor_freq ¼ valueh i.
Constraint: factor_freq � 0.

NE_INVALID_INT_RANGE_1

Value valueh i given to nnz is not valid. Correct range is 1 to n�m.

NE_INVALID_INT_RANGE_2

Value valueh i given to scale_opt is not valid. Correct range is 0 � scale_opt � 2.

NE_INVALID_REAL_RANGE_E

Value valueh i given to elastic_wt is not valid. Correct range is elastic_wt > 0:0.

NE_INVALID_REAL_RANGE_EE

Value valueh i given to f_diff_int is not valid. Correct range is � � f_diff_int < 1:0.

NE_NAME_TOO_LONG

The string pointed to by crnames½ valueh i� is too long. It should be no longer than 8 characters.

NE_NOT_APPEND_FILE

Cannot open file stringh i for appending.

NE_NOT_CLOSE_FILE

Cannot close file stringh i.

NE_OBJ_BOUND

Invalid lower bound for objective row. Bound should be � �inf_bound.

NE_OPT_NOT_INIT

Options structure not initialized.

NE_OUT_OF_WORKSPACE

There is insufficient workspace for the basis factors, and type="fixed"/> the maximum allowed
number of reallocation attempts, as type="fixed"/> specified by options.max_restart, has been
reached.

NE_STATE_VAL

state½ valueh i� is out of range. state½ valueh i� ¼ valueh i.

7 Accuracy

If major_feas_tol is set to 10�d (default value ¼
ffiffi
�

p
) and fail.code ¼ NE_NOERROR on exit, then the

final value of f xð Þ should have approximatively d correct digits.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.15

8 Further Comments

8.1 Termination Criteria

If nag_opt_nlp_sparse (e04ugc) returns with fail.code ¼ NE_NOERROR, the iterates have converged to a
point x that satisfies the first-order Kuhn–Karesh–Tucker conditions (see Section 10.1) to the accuracy
requested by the optional parameters major_feas_tol (default value ¼

ffiffi
�

p
) and major_opt_tol (default

value ¼
ffiffi
�

p
).

9 Example

There is one example program file, the main program of which calls both examples EX1 and EX2.
Example 1 (EX1) shows the simple use of nag_opt_nlp_sparse (e04ugc) where default values are used for
all optional parameters. An example showing the use of optional parameters is given in EX2 and is
described in Section 12.

Example 1 (EX1)

This is a reformulation of Problem 74 from Hock and Schittkowski (1981) and involves minimization of
the nonlinear function

f xð Þ ¼ 10�6x33 þ
2

3
� 10�6x34 þ 3x3 þ 2x4

subject to the bounds

�0:55 � x1 � 0:55
�0:55 � x2 � 0:55

5 � x3 � 1200
5 � x4 � 1200

to the nonlinear constraints

1000 sin �x1 � 0:25ð Þ þ 1000 sin �x2 � 0:25ð Þ � x3 ¼ �894:8
1000 sin x1 � 0:25ð Þ þ 1000 sin x1 � x2 � 0:25ð Þ � x4 ¼ �894:8
1000 sin x2 � 0:25ð Þ þ 1000 sin x2 � x1 � 0:25ð Þ ¼ �1294:8

and to the linear constraints

�x1 þ x2 � �0:55
x1 � x2 � �0:55

The initial point, which is infeasible, is

x0 ¼ 0; 0; 0; 0ð ÞT,
and f x0ð Þ ¼ 0.

The optimal solution (to five figures) is

x� ¼ 0:11887;�0:39623; 679:94; 1026:0ð ÞT,

and f x�ð Þ ¼ 5126:4. All the nonlinear constraints are active at the solution.

The use of the interface to nag_opt_nlp_sparse (e04ugc) for this particular example is briefly illustrated
below. First, note that because of the constraints on the definitions of nonlinear Jacobian variables and
nonlinear objective variables in the interface to nag_opt_nlp_sparse (e04ugc), the first objective variables
x1 and x2 are considered as nonlinear objective variables. Thus, nonln ¼ 4, and there are njnln ¼ 2
nonlinear Jacobian variables (x1 and x2). (The alternative would have consisted in reordering the problem
to have nonln ¼ 2 nonlinear objective variables and njnln ¼ 4 nonlinear constraint variables, but, as
mentioned earlier, it is preferable to keep the size of the nonlinear Jacobian Jð Þ small, having
nonln > njnln.)

e04ugc NAG C Library Manual

e04ugc.16 [NP3660/8]

The Jacobian matrix A is the m ¼ 6 by n ¼ 4 matrix below

A ¼

conjac½0� conjac½3� �1 0
conjac½1� conjac½4� 0 �1
conjac½2� conjac½5� 0 0

�1 1 0 0
1 �1 0 0
0 0 3 2

0
BBBBBB@

1
CCCCCCA
,

where zeros are not stored, each column represents a variable, each row a constraint (except the free row),
and the conjac½i� entries reflect the structure of the Jacobian J corresponding to the nonlinear constraints.
The first 3 rows correspond to the ncnln ¼ 3 nonlinear constraints, rows 4 and 5 define the 2 linear
constraints and there is finally an iobj ¼ 6th free row defining the linear part of the objective function,
3x3 þ 2x4.

A contains nnz ¼ 14 nonzero elements of which six entries define the structure of J . In this case all
entries in J are defined in the supplied function confun and there is no constant value that we want to pass
only once via A, so all entries in the corresponding array a corresponding to J can just be initialized to
dummy values (here 1:0eþ 25). Effective Jacobian values will be provided in the parameter conjac½i� 1�,
i ¼ 1; 2; . . . ; nnzjac, for nnzjac ¼ 6, in the function confun. Note also that in this simple example, J is
indeed full; otherwise, the structure of A should reflect the sparsity of J .

This example includes source code to store the matrix A in the arrays a, ha, ka, based on the simple
format from the data file.

Finally, the lower and upper bounds are defined by

bl ¼ �0:55;�0:55; 0:0; 0:0;�894:6;�894:6;�1294:8;�0:55;�0:55;�1:0eþ 25ð ÞT, and

bu ¼ 0:55; 0:55; 1200:0; 1200:0;�894:6;�894:6;�1294:8; 1:0eþ 25; 1:0eþ 25; 1:0eþ 25ð ÞT.
The first n ¼ 4 elements of bl and bu are simple bounds on the variables; the next 3 elements are bounds
on the nonlinear constraints; the next 2 elements are bounds on the linear constraints; and finally, the last
(unbounded) element corresponds to the free row.

9.1 Program Text

/* nag_nlp_sparse (e04ugc) Example Program.
*
* Copyright 2000 Numerical Algorithms Group.
*
* NAG C Library
*
* Mark 6, 2000.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <math.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C" {
#endif

static void confun(Integer ncnln, Integer njnln,
Integer nnzjac, const double x[], double conf[],
double conjac[], Nag_Comm *comm);

static void objfun(Integer nonln,
const double x[], double * objf,
double objgrad[], Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.17

static int ex1(void);
static int ex2(void);

int main(void)
{

/* Two examples are called: ex1() uses the
* default settings to solve a problem while
* ex2() solves the same problem with some
* of the optional parameters set by the user,
* perturbs the solution and then uses the
* warm start facility.
*/

Vprintf("nag_opt_nlp_sparse (e04ugc) Example Program Results\n");
if (ex1() != 0) return 1;
if (ex2() != 0) return 1;
return 0;

}

static int ex1(void)
{

Integer exit_status=0, *ha=0, i, icol, iobj, j, jcol, *ka=0, m, n, ncnln;
Integer ninf, njnln, nnz, nonln;
NagError fail;
double *a=0, *bl=0, *bu=0, obj, sinf, *xs=0;

INIT_FAIL(fail);

Vprintf("\nExample 1: default options used.\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file. */
Vscanf(" %*[^\n]");

/* Read the problem dimensions */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld", &n, &m);

/* Read NCNLN, NONLN and NJNLN from data file. */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%ld", &ncnln, &nonln, &njnln);

/* Read NNZ, IOBJ */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld", &nnz, &iobj);

if (! (a = NAG_ALLOC(nnz, double)) ||
! (bl = NAG_ALLOC(n+m, double)) ||
! (bu = NAG_ALLOC(n+m, double)) ||
! (xs = NAG_ALLOC(n+m, double)) ||
! (ha = NAG_ALLOC(nnz, Integer)) ||
! (ka = NAG_ALLOC(n+1, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}
/* read the matrix and set up ka. */
jcol = 1;
ka[jcol - 1] = 0;
Vscanf(" %*[^\n]");
for (i = 0; i < nnz; ++i)

{
/* a[i] stores (ha[i], icol) element of matrix */
Vscanf("%lf%ld%ld", &a[i], &ha[i], &icol);
if (icol < jcol)

{
/* Elements not ordered by increasing column index. */
Vprintf("Element in column%5ld found after element in"

" column%5ld. Problem abandoned.\n", icol, jcol);
exit_status = 1;

e04ugc NAG C Library Manual

e04ugc.18 [NP3660/8]

goto END;
}

else if (icol == jcol + 1)
{

/* Index in a of the start of the icol-th column equals i. */
ka[icol - 1] = i;
jcol = icol;

}
else if (icol > jcol + 1)

{
/* Index in a of the start of the icol-th column equals i,
* but columns jcol+1,jcol+2,...,icol-1 are empty. Set the
* corresponding elements of ka to i.
*/

for (j = jcol + 1; j <= icol - 1; ++j)
ka[j - 1] = i;

ka[icol - 1] = i;
jcol = icol;

}
}

ka[n] = nnz;
if (n > icol)

{
/* Columns N,N-1,...,ICOL+1 are empty. Set the
* corresponding elements of ka accordingly. */

for (j = icol; j <= n - 1; ++j)
ka[j] = nnz;

}

/* Read the bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < n + m; ++i)

Vscanf("%lf", &bl[i]);
Vscanf(" %*[^\n]");
for (i = 0; i < n + m; ++i)

Vscanf("%lf", &bu[i]);

/* Read the initial estimate of x */
Vscanf(" %*[^\n]");
for (i = 0; i < n; ++i)

Vscanf("%lf", &xs[i]);
Vscanf("%*[^\n]");

/* Solve the problem. */
/* nag_opt_nlp_sparse (e04ugc).
* NLP problem (sparse)
*/

nag_opt_nlp_sparse (confun, objfun, n, m,
ncnln, nonln, njnln, iobj, nnz,
a, ha, ka, bl, bu, xs,
&ninf, &sinf, &obj, NAGCOMM_NULL,
E04_DEFAULT, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_opt_nlp_sparse (e04ugc).\n%s\n", fail.message);
exit_status = 1;

}

END:
if (a) NAG_FREE(a);
if (bl) NAG_FREE(bl);
if (bu) NAG_FREE(bu);
if (xs) NAG_FREE(xs);
if (ha) NAG_FREE(ha);
if (ka) NAG_FREE(ka);
return exit_status;

}

/* Subroutine */

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.19

static void confun(Integer ncnln, Integer njnln,
Integer nnzjac, const double x[], double conf[],
double conjac[], Nag_Comm *comm)

{
#define CONJAC(I) conjac[(I)-1]
#define CONF(I) conf[(I)-1]
#define X(I) x[(I)-1]

/* Compute the nonlinear constraint functions and their Jacobian. */
if (comm->flag == 0 || comm->flag == 2)

{
CONF(1) = sin (-X(1) - 0.25) * 1e3 + sin (-X(2) - 0.25) * 1e3;
CONF(2) = sin (X(1) - 0.25) * 1e3 + sin (X(1) - X(2) - 0.25) * 1e3;
CONF(3) = sin (X(2) - X(1) - 0.25) * 1e3 + sin (X(2) - 0.25) * 1e3;

}
if (comm->flag == 1 || comm->flag == 2)

{
/* Nonlinear Jacobian elements for column 1.0 */
CONJAC(1) = cos (-X(1) - 0.25) * -1e3;
CONJAC(2) = cos (X(1) - 0.25) * 1e3 + cos (X(1) - X(2) - 0.25) * 1e3;
CONJAC(3) = cos (X(2) - X(1) - 0.25) * -1e3;
/* Nonlinear Jacobian elements for column 2.0 */
CONJAC(4) = cos (-X(2) - 0.25) * -1e3;
CONJAC(5) = cos (X(1) - X(2) - 0.25) * -1e3;
CONJAC(6) = cos (X(2) - X(1) - 0.25) * 1e3 + cos (X(2) - 0.25) * 1e3;

}
}
static void objfun(Integer nonln,

const double x[], double *objf,
double objgrad[], Nag_Comm *comm)

{
#define OBJGRAD(I) objgrad[(I)-1]
#define X(I) x[(I)-1]

/* Compute the nonlinear part of the objective function and its grad */
if (comm->flag == 0 || comm->flag == 2)

*objf = X(3) * X(3) * X(3) * 1e-6 + X(4) * X(4) * X(4) * 2e-6 / 3.0;
if (comm->flag == 1 || comm->flag == 2)

{
OBJGRAD(1) = 0.0;
OBJGRAD(2) = 0.0;
OBJGRAD(3) = X(3) * X(3) * 3e-6;
OBJGRAD(4) = X(4) * X(4) * 2e-6;

}
}

#define NAMES(I,J) names[(I)*9+J]
#define MAXNAMES 300
static int ex2(void)
{

Integer exit_status=0, *ha=0, i, icol, iobj, j, jcol, *ka=0, m, n, ncnln;
Integer ninf, njnln, nnz, nonln;
NagError fail;
Nag_E04_Opt options;
char **crnames=0, *names=0;
double *a=0, *bl=0, *bu=0, obj, sinf, *xs=0;

INIT_FAIL(fail);

Vprintf("\nExample 2: Use of the option structure.\n");
Vscanf(" %*[^\n]");

/* Read the problem dimensions */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld", &n, &m);

/* Read NCNLN, NONLN and NJNLN from data file. */
Vscanf(" %*[^\n]");
Vscanf("%ld%ld%ld", &ncnln, &nonln, &njnln);

/* Read NNZ, IOBJ */
Vscanf(" %*[^\n]");

e04ugc NAG C Library Manual

e04ugc.20 [NP3660/8]

Vscanf("%ld%ld", &nnz, &iobj);

if (! (a = NAG_ALLOC(nnz, double)) ||
! (bl = NAG_ALLOC(n+m, double)) ||
! (bu = NAG_ALLOC(n+m, double)) ||
! (xs = NAG_ALLOC(n+m, double)) ||
! (ha = NAG_ALLOC(nnz, Integer)) ||
! (ka = NAG_ALLOC(n+1, Integer)) ||
!(crnames = NAG_ALLOC(n+m, char *)) ||
!(names = NAG_ALLOC((n+m)*9, char))
)

{
Vprintf("Allocation failure\n");
exit_status = 1;
goto END;

}

/* Read the column and row names */
Vscanf(" %*[^\n]");
Vscanf(" %*[^’]");
for (i = 0; i < n+m; ++i)

{
Vscanf(" ’%8c’", &NAMES(i,0));
NAMES(i,8) = ’\0’;
crnames[i] = &NAMES(i,0);

}

/* read the matrix and set up ka. */
jcol = 1;
ka[jcol - 1] = 0;
Vscanf(" %*[^\n]");
for (i = 0; i < nnz; ++i)

{
/* a[i] stores (ha[i], icol) element of matrix */
Vscanf("%lf%ld%ld", &a[i], &ha[i], &icol);
if (icol < jcol)

{
/* Elements not ordered by increasing column index. */
Vprintf("Element in column%5ld found after element in"

" column%5ld. Problem abandoned.\n", icol, jcol);
exit_status=1;
goto END;

}
else if (icol == jcol + 1)

{
/* Index in a of the start of the icol-th column equals i. */
ka[icol - 1] = i;
jcol = icol;

}
else if (icol > jcol + 1)

{
/* Index in a of the start of the icol-th column equals i,
* but columns jcol+1,jcol+2,...,icol-1 are empty. Set the
* corresponding elements of ka to i.
*/

for (j = jcol + 1; j <= icol - 1; ++j)
ka[j - 1] = i;

ka[icol - 1] = i;
jcol = icol;

}
}

ka[n] = nnz;
if (n > icol)

{
/* Columns N,N-1,...,ICOL+1 are empty. Set the
* corresponding elements of ka accordingly. */

for (j = icol; j <= n - 1; ++j)
ka[j] = nnz;

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.21

}

/* Read the bounds */
Vscanf(" %*[^\n]");
for (i = 0; i < n + m; ++i)

Vscanf("%lf", &bl[i]);
Vscanf(" %*[^\n]");
for (i = 0; i < n + m; ++i)

Vscanf("%lf", &bu[i]);

/* Read the initial estimate of x */
Vscanf(" %*[^\n]");
for (i = 0; i < n; ++i)

Vscanf("%lf", &xs[i]);

/* Initialize the options structure */
/* nag_opt_init (e04xxc).
* Initialization function for option setting
*/

nag_opt_init(&options);

/* Read some option values from standard input */
/* nag_opt_read (e04xyc).
* Read options from a text file
*/

nag_opt_read("e04ugc", "stdin", &options, (Nag_Boolean)Nag_TRUE,
"stdout", NAGERR_DEFAULT);

/* Set some other options directly */
options.major_iter_lim = 100;
options.crnames = crnames;

/* Solve the problem. */
/* nag_opt_nlp_sparse (e04ugc), see above. */
nag_opt_nlp_sparse (confun, objfun, n, m,

ncnln, nonln, njnln, iobj, nnz,
a, ha, ka, bl, bu, xs,
&ninf, &sinf, &obj, NAGCOMM_NULL,
&options, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_opt_nlp_sparse (e04ugc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* We perturb the solution and solve the
* same problem again using a warm start.
*/

Vprintf("\n\n\nA run of the same example with a warm start:\n");
Vprintf("--\n");
options.start = Nag_Warm;

/* Modify some printing options */
options.print_deriv = Nag_D_NoPrint;
options.print_level = Nag_Iter;

/* Perturb xs */
for (i=0; i<n+m;i++)

xs[i]+=0.2;

/* Reset multiplier estimates to 0.0 */
if (ncnln > 0)

{
for (i=0; i<ncnln; i++)

options.lambda[n+i]=0.0;
}

/* Solve the problem again. */
/* nag_opt_nlp_sparse (e04ugc), see above. */
nag_opt_nlp_sparse (confun, objfun, n, m,

e04ugc NAG C Library Manual

e04ugc.22 [NP3660/8]

ncnln, nonln, njnln, iobj, nnz,
a, ha, ka, bl, bu, xs,
&ninf, &sinf, &obj, NAGCOMM_NULL,
&options, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_opt_nlp_sparse (e04ugc).\n%s\n", fail.message);
exit_status = 1;

}
/* Free memory allocated by nag_opt_nlp_sparse (e04ugc) to pointers in options
*/

/* nag_opt_free (e04xzc).
* Memory freeing function for use with option setting
*/

nag_opt_free(&options, "all", &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_opt_free (e04xzc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

END:
if (a) NAG_FREE(a);
if (bl) NAG_FREE(bl);
if (bu) NAG_FREE(bu);
if (xs) NAG_FREE(xs);
if (ha) NAG_FREE(ha);
if (ka) NAG_FREE(ka);
if (crnames) NAG_FREE(crnames);
if (names) NAG_FREE(names);
return exit_status;

}

9.2 Program Data

nag_opt_nlp_sparse (e04ugc) Example Program Data

Data for example 1.

Values of n and m
4 6

Values of ncnln, nonln and njnln
3 4 2

Values of nnz and iobj
14 6

Matrix nonzeros: value, row index, column index
1.0E+25 1 1
1.0E+25 2 1
1.0E+25 3 1

-1.0 4 1
1.0 5 1

1.0E+25 1 2
1.0E+25 2 2
1.0E+25 3 2

1.0 4 2
-1.0 5 2
3.0 6 3

-1.0 1 3
-1.0 2 4
2.0 6 4

Lower bounds
-0.55 -0.55 0.0 0.0 -894.8 -894.8 -1294.8 -0.55
-0.55 -1.0E+25

Upper bounds

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.23

0.55 0.55 1200.0 1200.0 -894.8 -894.8 -1294.8 1.0E+25
1.0E+25 1.0E+25

Initial estimate of X
0.0 0.0 0.0 0.0

Data for example 2

Values of n and m
4 6

Values of ncnln, nonln and njnln
3 4 2

Values of nnz and iobj
14 6

Columns and rows names
’Varble 1’ ’Varble 2’ ’Varble 3’ ’Varble 4’ ’NlnCon 1’
’NlnCon 2’ ’NlnCon 3’ ’LinCon 1’ ’LinCon 2’ ’Free Row’

Matrix nonzeros: value, row index, column index
1.0E+25 1 1
1.0E+25 2 1
1.0E+25 3 1

1.0 5 1
-1.0 4 1

1.0E+25 1 2
1.0E+25 2 2
1.0E+25 3 2

1.0 5 2
-1.0 4 2
3.0 6 3

-1.0 1 3
-1.0 2 4
2.0 6 4

Lower bounds
-0.55 -0.55 0.0 0.0 -894.8 -894.8 -1294.8 -0.55
-0.55 -1.0E+25

Upper bounds
0.55 0.55 1200.0 1200.0 -894.8 -894.8 -1294.8 1.0E+25
1.0E+25 1.0E+25

Initial estimate of X
0.0 0.0 0.0 0.0

Begin e04ugc
minor_iter_lim = 20
iter_lim = 30
End

9.3 Program Results

nag_opt_nlp_sparse (e04ugc) Example Program Results

Example 1: default options used.

Parameters to e04ugc

Frequencies.
fcheck.................. 60 expand_freq............ 10000
factor_freq............. 50

QP subproblems.
scale_tol............... 9.00e-01 minor_feas_tol......... 1.05e-08
scale_opt............... 1 minor_opt_tol.......... 1.05e-08
part_price.............. 1 crash_tol.............. 1.00e-01

e04ugc NAG C Library Manual

e04ugc.24 [NP3660/8]

pivot_tol............... 2.05e-11 minor_print_level..... Nag_NoPrint
crash.................. Nag_NoCrash elastic_wt............. 1.00e+02

Derivatives.
obj_deriv............... Nag_TRUE con_deriv.............. Nag_TRUE
verify_grad........ Nag_SimpleCheck print_deriv........... Nag_D_Print
Start obj check at col.. 1 Stop obj check at col.. 4
Start con check at col.. 1 Stop con check at col.. 2

The SQP method.
direction............. Nag_Minimize
Nonlinear objective vars 4 major_opt_tol.......... 1.05e-08
f_prec.................. 1.72e-13 inf_step............... 1.00e+20
max_sb.................. 4 f_diff_int............. 4.15e-07
unbounded_obj........... 1.00e+15 c_diff_int............. 5.57e-05
major_step_lim.......... 2.00e+00 deriv_linesearch....... Nag_FALSE
print_level.......... Nag_Soln_Iter major_iter_lim......... 1000
linesearch_tol.......... 9.00e-01 minor_iter_lim......... 500
inf_bound............... 1.00e+20 iter_lim............... 10000

Hessian approximation.
hess_storage....... Nag_HessianFull hess_update............ 20
hess_freq............... 99999999

Nonlinear constraints.
Nonlinear constraints... 3 major_feas_tol......... 1.05e-08
Nonlinear Jacobian vars. 2 violation_limit........ 1.00e+01

Miscellaneous.
Variables............... 4 Linear constraints..... 3
Nonlinear variables..... 4 Linear variables....... 0
lu_factor_tol........... 5.00e+00 lu_sing_tol............ 2.05e-11
lu_update_tol........... 5.00e+00 lu_den_tol............. 6.00e-01
eps (machine precision). 1.11e-16
start................... Nag_Cold feas_exit.............. Nag_FALSE
Names................ not supplied print_80ch............. Nag_TRUE
outfile................. stdout

Memory allocation.
nz_coef................. 5.00e+00 Initial sizes of work arrays.
state................... Nag Integers............... 1628
lambda.................. Nag Reals.................. 1258

XXX Scale option reduced from 1 to 0.
XXX Feasible linear rows.
XXX Norm(x-x0) minimized. Sum of infeasibilities = 0.00e+00.

confun sets 6 out of 6 constraint gradients.
objfun sets 4 out of 4 objective gradients.

--
Verification of constraint gradients returned by subroutine confun
--

Cheap test on confun...

The Jacobian seems to be OK.

The largest discrepancy was 4.42e-08 in constraint 2.

Verification of objective gradients returned by subroutine objfun

Cheap test on objfun...

The objective gradients seem to be OK.
Gradient projected in two directions 0.00000000000e+00 0.00000000000e+00
Difference approximations 1.74248004037e-19 4.49092793911e-21
XXX All-slack basis B = I selected.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.25

XXX Large multipliers.
Elastic mode started with weight = 2.0e+02.

Maj Mnr Step Merit Function Feasibl Optimal Cond Hz PD
0 12 0.0e+00 3.199952e+05 1.7e+00 8.0e-01 2.1e+06 FF R i
1 2 1.0e+00 2.463016e+05 1.2e+00 3.2e+03 4.5e+00 FF s
2 1 1.0e+00 1.001802e+04 3.3e-02 9.2e+01 4.5e+00 FF
3 1 1.0e+00 5.253418e+03 6.6e-04 2.5e+01 4.8e+00 FF
4 1 1.0e+00 5.239444e+03 2.0e-06 2.8e+01 1.0e+02 FF
5 1 1.0e+00 5.126208e+03 6.0e-04 5.9e-01 1.1e+02 FF
6 1 1.0e+00 5.126498e+03 4.7e-07 2.9e-02 1.0e+02 FF
7 1 1.0e+00 5.126498e+03 5.9e-10 1.5e-03 1.1e+02 TF
8 1 1.0e+00 5.126498e+03 1.2e-12 7.6e-09 1.1e+02 TT

Exit from NP problem after 8 major iterations,
21 minor iterations.

Variable State Value Lower Bound Upper Bound Lagr Mult Resi-
dual

X1 BS 1.188764e-01 -5.50000e-01 5.50000e-01 -1.2529e-07
4.3112e-01

X2 BS -3.962336e-01 -5.50000e-01 5.50000e-01 1.9243e-08
1.5377e-01

X3 BS 6.799453e+02 0.00000e+00 1.20000e+03 1.7001e-10
5.2005e+02

X4 SBS 1.026067e+03 0.00000e+00 1.20000e+03 -2.1918e-10
1.7393e+02

Constrnt State Value Lower Bound Upper Bound Lagr Mult Resi-
dual

N1 EQ -8.948000e+02 -8.94800e+02 -8.94800e+02 -4.3870e+00
3.3644e-09

N2 EQ -8.948000e+02 -8.94800e+02 -8.94800e+02 -4.1056e+00
6.0072e-10

N3 EQ -1.294800e+03 -1.29480e+03 -1.29480e+03 -5.4633e+00
3.3554e-09

L1 BS -5.151099e-01 -5.50000e-0 None 25 0.0000e+00
3.4890e-02

L2 BS 5.151099e-01 -5.50000e-0 None 25 0.0000e+00
1.0651e+00

Free Row BS 4.091970e+03 None None 25 -1.0000e+00
4.0920e+03

Exit e04ugc - Optimal solution found.

Final objective value = 5126.498

Example 2: Use of the option structure.

Optional parameter setting for e04ugc.

Option file: stdin

minor_iter_lim = 20
iter_lim = 30

Parameters to e04ugc

Frequencies.
fcheck.................. 60 expand_freq............ 10000
factor_freq............. 50

QP subproblems.
scale_tol............... 9.00e-01 minor_feas_tol......... 1.05e-08
scale_opt............... 1 minor_opt_tol.......... 1.05e-08
part_price.............. 1 crash_tol.............. 1.00e-01

e04ugc NAG C Library Manual

e04ugc.26 [NP3660/8]

pivot_tol............... 2.05e-11 minor_print_level..... Nag_NoPrint
crash.................. Nag_NoCrash elastic_wt............. 1.00e+02

Derivatives.
obj_deriv............... Nag_TRUE con_deriv.............. Nag_TRUE
verify_grad........ Nag_SimpleCheck print_deriv........... Nag_D_Print
Start obj check at col.. 1 Stop obj check at col.. 4
Start con check at col.. 1 Stop con check at col.. 2

The SQP method.
direction............. Nag_Minimize
Nonlinear objective vars 4 major_opt_tol.......... 1.05e-08
f_prec.................. 1.72e-13 inf_step............... 1.00e+20
max_sb.................. 4 f_diff_int............. 4.15e-07
unbounded_obj........... 1.00e+15 c_diff_int............. 5.57e-05
major_step_lim.......... 2.00e+00 deriv_linesearch....... Nag_FALSE
print_level.......... Nag_Soln_Iter major_iter_lim......... 100
linesearch_tol.......... 9.00e-01 minor_iter_lim......... 20
inf_bound............... 1.00e+20 iter_lim............... 30

Hessian approximation.
hess_storage....... Nag_HessianFull hess_update............ 20
hess_freq............... 99999999

Nonlinear constraints.
Nonlinear constraints... 3 major_feas_tol......... 1.05e-08
Nonlinear Jacobian vars. 2 violation_limit........ 1.00e+01

Miscellaneous.
Variables............... 4 Linear constraints..... 3
Nonlinear variables..... 4 Linear variables....... 0
lu_factor_tol........... 5.00e+00 lu_sing_tol............ 2.05e-11
lu_update_tol........... 5.00e+00 lu_den_tol............. 6.00e-01
eps (machine precision). 1.11e-16
start................... Nag_Cold feas_exit.............. Nag_FALSE
Names.................... supplied print_80ch............. Nag_TRUE
outfile................. stdout

Memory allocation.
nz_coef................. 5.00e+00 Initial sizes of work arrays.
state................... Nag Integers............... 1628
lambda.................. Nag Reals.................. 1258

XXX Scale option reduced from 1 to 0.
XXX Feasible linear rows.
XXX Norm(x-x0) minimized. Sum of infeasibilities = 0.00e+00.

confun sets 6 out of 6 constraint gradients.
objfun sets 4 out of 4 objective gradients.

--
Verification of constraint gradients returned by subroutine confun
--

Cheap test on confun...

The Jacobian seems to be OK.

The largest discrepancy was 4.42e-08 in constraint 2.

Verification of objective gradients returned by subroutine objfun

Cheap test on objfun...

The objective gradients seem to be OK.
Gradient projected in two directions 0.00000000000e+00 0.00000000000e+00
Difference approximations 1.74248004037e-19 4.49092793911e-21
XXX All-slack basis B = I selected.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.27

XXX Large multipliers.
Elastic mode started with weight = 2.0e+02.

Maj Mnr Step Merit Function Feasibl Optimal Cond Hz PD
0 9 0.0e+00 3.199952e+05 1.7e+00 8.0e-01 1.0e+00 FF R i
1 4 1.0e+00 2.419951e+05 7.7e-01 3.7e+01 1.0e+00 FF s
2 1 1.0e+00 5.172188e+03 2.9e-02 1.9e+00 1.0e+00 FF
3 1 3.8e-01 5.038588e+03 1.8e-02 4.6e+00 1.2e+02 FF
4 1 3.6e-01 5.120830e+03 1.2e-02 2.0e+00 1.6e+02 FF
5 1 1.0e+00 5.126491e+03 1.0e-04 3.6e-02 1.7e+02 FF
6 1 3.1e-01 5.126498e+03 7.1e-05 3.1e-02 1.1e+02 FF
7 1 1.0e+00 5.126498e+03 4.3e-09 6.5e-04 1.1e+02 TF
8 1 1.0e+00 5.126498e+03 4.5e-13 4.8e-05 1.1e+02 TF
9 0 1.0e+00 5.126498e+03 1.3e-15 3.5e-13 1.1e+02 TT

Exit from NP problem after 9 major iterations,
20 minor iterations.

Variable State Value Lower Bound Upper Bound Lagr Mult Resi-
dual

Varble 1 BS 1.188764e-01 -5.50000e-01 5.50000e-01 -1.5210e-13
4.3112e-01

Varble 2 BS -3.962336e-01 -5.50000e-01 5.50000e-01 1.6171e-11
1.5377e-01

Varble 3 BS 6.799453e+02 0.00000e+00 1.20000e+03 -2.8644e-14
5.2005e+02

Varble 4 SBS 1.026067e+03 0.00000e+00 1.20000e+03 -6.7946e-14
1.7393e+02

Constrnt State Value Lower Bound Upper Bound Lagr Mult Resi-
dual

NlnCon 1 EQ -8.948000e+02 -8.94800e+02 -8.94800e+02 -4.3870e+00
3.5243e-12

NlnCon 2 EQ -8.948000e+02 -8.94800e+02 -8.94800e+02 -4.1056e+00
6.8212e-13

NlnCon 3 EQ -1.294800e+03 -1.29480e+03 -1.29480e+03 -5.4633e+00
3.1832e-12

LinCon 1 BS 2.773572e-01 -5.50000e-0 None 25 0.0000e+00
8.2736e-01

LinCon 2 BS -2.773572e-01 -5.50000e-0 None 25 0.0000e+00
2.7264e-01

Free Row BS 4.091970e+03 None None 25 -1.0000e+00
4.0920e+03

Exit e04ugc - Optimal solution found.

Final objective value = 5126.498

A run of the same example with a warm start:
--

Parameters to e04ugc

Frequencies.
fcheck.................. 60 expand_freq............ 10000
factor_freq............. 50

QP subproblems.
scale_tol............... 9.00e-01 minor_feas_tol......... 1.05e-08
scale_opt............... 1 minor_opt_tol.......... 1.05e-08
part_price.............. 1 crash_tol.............. 1.00e-01
pivot_tol............... 2.05e-11 minor_print_level..... Nag_NoPrint
crash.................. Nag_NoCrash elastic_wt............. 1.00e+02

Derivatives.

e04ugc NAG C Library Manual

e04ugc.28 [NP3660/8]

obj_deriv............... Nag_TRUE con_deriv.............. Nag_TRUE
verify_grad........ Nag_SimpleCheck print_deriv......... Nag_D_NoPrint
Start obj check at col.. 1 Stop obj check at col.. 4
Start con check at col.. 1 Stop con check at col.. 2

The SQP method.
direction............. Nag_Minimize
Nonlinear objective vars 4 major_opt_tol.......... 1.05e-08
f_prec.................. 1.72e-13 inf_step............... 1.00e+20
max_sb.................. 4 f_diff_int............. 4.15e-07
unbounded_obj........... 1.00e+15 c_diff_int............. 5.57e-05
major_step_lim.......... 2.00e+00 deriv_linesearch....... Nag_FALSE
print_level............... Nag_Iter major_iter_lim......... 100
linesearch_tol.......... 9.00e-01 minor_iter_lim......... 20
inf_bound............... 1.00e+20 iter_lim............... 30

Hessian approximation.
hess_storage....... Nag_HessianFull hess_update............ 20
hess_freq............... 99999999

Nonlinear constraints.
Nonlinear constraints... 3 major_feas_tol......... 1.05e-08
Nonlinear Jacobian vars. 2 violation_limit........ 1.00e+01

Miscellaneous.
Variables............... 4 Linear constraints..... 3
Nonlinear variables..... 4 Linear variables....... 0
lu_factor_tol........... 5.00e+00 lu_sing_tol............ 2.05e-11
lu_update_tol........... 5.00e+00 lu_den_tol............. 6.00e-01
eps (machine precision). 1.11e-16
start................... Nag_Warm feas_exit.............. Nag_FALSE
Names.................... supplied print_80ch............. Nag_TRUE
outfile................. stdout

Memory allocation.
nz_coef................. 5.00e+00 Initial sizes of work arrays.
state................... Nag Integers............... 1628
lambda.................. Nag Reals.................. 1258

XXX Scale option reduced from 1 to 0.
XXX Feasible linear rows.
XXX Norm(x-x0) minimized. Sum of infeasibilities = 0.00e+00.
XXX All-slack basis B = I selected.

Maj Mnr Step Merit Function Feasibl Optimal Cond Hz PD
0 1 0.0e+00 5.128197e+03 1.3e-01 1.1e+00 1.7e+00 FF R
1 1 1.0e+00 4.883655e+03 3.5e-03 5.7e-01 2.0e+02 FF S
2 1 1.8e-01 5.126320e+03 2.8e-03 3.7e+00 1.9e+02 FF
3 1 2.8e-01 5.126417e+03 2.0e-03 1.1e+00 1.9e+02 FF
4 1 1.0e+00 5.126499e+03 3.2e-06 1.9e-01 2.0e+02 FF
5 1 1.0e+00 5.126498e+03 1.1e-08 4.2e-02 1.1e+02 FF
6 1 1.0e+00 5.126498e+03 2.2e-09 1.2e-06 1.1e+02 TF
7 1 1.0e+00 5.126498e+03 8.1e-17 2.7e-10 1.1e+02 TT

Exit from NP problem after 7 major iterations,
8 minor iterations.

Exit e04ugc - Optimal solution found.

Final objective value = 5126.498

10 Further Description

nag_opt_nlp_sparse (e04ugc) implements a sequential quadratic programming (SQP) method that obtains
search directions from a sequence of quadratic programming (QP) subproblems. This section gives a
detailed description of the algorithms used by nag_opt_nlp_sparse (e04ugc). This, and possibly the next

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.29

section, Section 11, may be omitted if the more sophisticated features of the algorithm and software are not
currently of interest.

10.1 Overview

Here we briefly summarize the main features of the method and introduce some terminology. Where
possible, explicit reference is made to the names of variables that are parameters of the function or appear
in the printed output. Further details can be found in Gill et al. (2002).

At a solution of (1), some of the constraints will be active, i.e., satisfied exactly. Let

r xð Þ ¼
x

F xð Þ
Gx

0
@

1
A,

and G denote the set of indices of r xð Þ corresponding to active constraints at an arbitrary point x. Let r0j xð Þ
denote the usual derivative of rj xð Þ, which is the row vector of first partial derivatives of rj xð Þ (see Ortega

and Rheinboldt (1970)). The vector r0j xð Þ comprises the jth row of r0 xð Þ so that

r0 xð Þ ¼
I

J xð Þ
G

0
@

1
A,

where J xð Þ is the Jacobian of F xð Þ.
A point x is a first-order Kuhn–Karesh–Tucker (KKT) point for (1) (see, e.g., Powell (1974)) if the
following conditions hold:

(a) x is feasible;

(b) there exists a vector � (the Lagrange multiplier vector for the bound and general constraints) such
that

g xð Þ ¼ r0 xð ÞT� ¼ I J xð ÞT GT
� �

�, ð4Þ

where g is the gradient of f evaluated at x;

(c) the Lagrange multiplier �j associated with the jth constraint satisfies �j ¼ 0 if lj < rj xð Þ < uj; �j � 0
if lj ¼ rj xð Þ; �j � 0 if rj xð Þ ¼ uj; and �j can have any value if lj ¼ uj.

An equivalent statement of the condition (4) is

ZTg xð Þ ¼ 0,

where Z is a matrix defined as follows. Consider the set N of vectors orthogonal to the gradients of the
active constraints, i.e.,

N ¼ z j r0j xð Þz ¼ 0 for all j 2 G
� 	

.

The columns of Z may then be taken as any basis for the vector space N . The vector ZTg is termed the
reduced gradient of f at x. Certain additional conditions must be satisfied in order for a first-order KKT
point to be a solution of (1) (see, e.g., Powell (1974)).

The basic structure of nag_opt_nlp_sparse (e04ugc) involves major and minor iterations. The major
iterations generate a sequence of iterates xkf g that satisfy the linear constraints and converge to a point x�

that satisfies the first-order KKT optimality conditions. At each iterate a QP subproblem is used to
generate a search direction towards the next iterate xkþ1ð Þ. The constraints of the subproblem are formed
from the linear constraints Gx� sL ¼ 0 and the nonlinear constraint linearization

F xkð Þ þ F 0 xkð Þ x� xkð Þ � sN ¼ 0,

where F 0 xkð Þ denotes the Jacobian matrix, whose rows are the first partial derivatives of F xð Þ evaluated at
the point xk . The QP constraints therefore comprise the m linear constraints

F 0 xkð Þx �sN ¼ �F xkð Þ þ F 0 xkð Þxk ,
Gx �sL ¼ 0,

e04ugc NAG C Library Manual

e04ugc.30 [NP3660/8]

where x and s ¼ sN ; sLð ÞT are bounded above and below by u and l as before. If the m by n matrix A and
m element vector b are defined as

A ¼ F 0 xkð Þ
G

� �
and b ¼ �F xkð Þ þ F 0 xkð Þxk

0

� �
,

then the QP subproblem can be written as

minimize
x;s

q xð Þ subject to Ax� s ¼ b, l � x
s

� �
� u, ð5Þ

where q xð Þ is a quadratic approximation to a modified Lagrangian function (see Gill et al. (2002)).

The linear constraint matrix A is stored in the arrays a, ha and ka (see Section 5). This allows you to
specify the sparsity pattern of non-zero elements in F 0 xð Þ and G, and identify any non-zero elements that
remain constant throughout the minimization.

Solving the QP subproblem is itself an iterative procedure, with the minor iterations of an SQP method
being the iterations of the QP method. At each minor iteration, the constraints Ax� s ¼ b are
(conceptually) partitioned into the form

BxB þ SxS þ NxN ¼ b,

where the basis matrix B is square and non-singular. The elements of xB, xS and xN are called the basic,
superbasic and nonbasic variables respectively; they are a permutation of the elements of x and s. At a QP
solution, the basic and superbasic variables will lie somewhere between their bounds, while the nonbasic
variables will be equal to one of their upper or lower bounds. At each minor iteration, xS is regarded as a
set of independent variables that are free to move in any desired direction, namely one that will improve
the value of the QP objective function q xð Þ or sum of infeasibilities (as appropriate). The basic variables
are then adjusted in order to ensure that x; sð Þ continues to satisfy Ax� s ¼ b. The number of superbasic
variables (nS say) therefore indicates the number of degrees of freedom remaining after the constraints have
been satisfied. In broad terms, nS is a measure of how nonlinear the problem is. In particular, nS will
always be zero if there are no nonlinear constraints in (1) and f xð Þ is linear.

If it appears that no improvement can be made with the current definition of B, S and N , a nonbasic
variable is selected to be added to S, and the process is repeated with the value of nS increased by one. At
all stages, if a basic or superbasic variable encounters one of its bounds, the variable is made nonbasic and
the value of nS decreased by one.

Associated with each of the m equality constraints Ax� s ¼ b is a dual variable �i. Similarly, each
variable in x; sð Þ has an associated reduced gradient dj (also known as a reduced cost). The reduced

gradients for the variables x are the quantities g � AT�, where g is the gradient of the QP objective
function q xð Þ; and the reduced gradients for the slack variables s are the dual variables �. The QP
subproblem (5) is optimal if dj � 0 for all nonbasic variables at their lower bounds, dj � 0 for all nonbasic
variables at their upper bounds and dj ¼ 0 for other variables (including superbasics). In practice, an
approximate QP solution is found by slightly relaxing these conditions on dj (see the description of the
optional parameter minor_opt_tol).

After a QP subproblem has been solved, new estimates of the solution to (1) are computed using a
linesearch on the augmented Lagrangian merit function

M x; s; �ð Þ ¼ f xð Þ � �T F xð Þ � sNð Þ þ 1

2
F xð Þ � sNð ÞTD F xð Þ � sNð Þ, ð6Þ

where D is a diagonal matrix of penalty parameters. If xk ; sk ; �kð Þ denotes the current estimate of the
solution and x̂; ŝ; �̂ð Þ denotes the optimal QP solution, the linesearch determines a step �k (where
0 < �k � 1) such that the new point

xkþ1

skþ1

�kþ1

0
@

1
A ¼

xk
sk
�k

0
@

1
A þ �k

x̂k � xk
ŝk � sk
�̂k � �k

0
@

1
A

produces a sufficient decrease in the merit function (6). When necessary, the penalties in D are increased
by the minimum-norm perturbation that ensures descent for M (see Gill et al. (1992)). As in nag_opt_nlp

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.31

(e04ucc), sN is adjusted to minimize the merit function as a function of s prior to the solution of the QP
subproblem. Further details can be found in Eldersveld (1991) and Gill et al. (1986c).

10.2 Treatment of Constraint Infeasibilities

nag_opt_nlp_sparse (e04ugc) makes explicit allowance for infeasible constraints. Infeasible linear
constraints are detected first by solving a problem of the form

minimize
x;v;w

eT vþ wð Þ subject to l � x
Gx� uþ w

� �
� u, v � 0, w � 0, ð7Þ

where e ¼ 1; 1; . . . ; 1ð ÞT. This is equivalent to minimizing the sum of the general linear constraint
violations subject to the simple bounds. (In the linear programming literature, the approach is often called
elastic programming.)

If the linear constraints are infeasible (i.e., v 6¼ 0 or w 6¼ 0), the function terminates without computing the
nonlinear functions.

If the linear constraints are feasible, all subsequent iterates will satisfy the linear constraints. (Such a
strategy allows linear constraints to be used to define a region in which f xð Þ and F xð Þ can be safely
evaluated.) The function proceeds to solve (1) as given, using search directions obtained from a sequence
of QP subproblems (5). Each QP subproblem minimizes a quadratic model of a certain Lagrangian
function subject to linearized constraints. An augmented Lagrangian merit function (6) is reduced along
each search direction to ensure convergence from any starting point.

The function enters ‘elastic’ mode if the QP subproblem proves to be infeasible or unbounded (or if the
dual variables � for the nonlinear constraints become ‘large’) by solving a problem of the form

minimize
x;v;w

�f x; v;wð Þ subject to l �
x

F xð Þ � vþ w
Gx

8<
:

9=
; � u, v � 0, w � 0, ð8Þ

where

�f x; v;wð Þ ¼ f xð Þ þ �eT vþ wð Þ ð9Þ
is called a composite objective and � is a non-negative parameter (the elastic weight). If � is sufficiently
large, this is equivalent to minimizing the sum of the nonlinear constraint violations subject to the linear
constraints and bounds. A similar l1 formulation of (1) is fundamental to the Sl1QP algorithm of Fletcher
(1984). See also Conn (1973).

11 Optional Parameters

A number of optional input and output parameters to nag_opt_nlp_sparse (e04ugc) are available through
the structure argument options, type Nag_E04_Opt. A parameter may be selected by assigning an
appropriate value to the relevant structure member; those parameters not selected will be assigned default
values. If no use is to be made of any of the optional parameters the user should use the NAG defined null
pointer, E04_DEFAULT, in place of options when calling nag_opt_nlp_sparse (e04ugc); the default settings
will then be used for all parameters.

Before assigning values to options directly the structure must be initialized by a call to the function
nag_opt_init (e04xxc). Values may then be assigned to the structure members in the normal C manner.

Option settings may also be read from a text file using the function nag_opt_read (e04xyc) in which case
initialization of the options structure will be performed automatically if not already done. Any subsequent
direct assignment to the options structure must not be preceded by initialization.

If assignment of memory to pointers in the options structure is required, then this must be done directly in
the calling program; they cannot be assigned using nag_opt_read (e04xyc).

e04ugc NAG C Library Manual

e04ugc.32 [NP3660/8]

11.1 Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag_opt_nlp_sparse (e04ugc) together with their default values where relevant. The number � is a
generic notation for machine precision (see nag_machine_precision (X02AJC)).

Nag_Start start Nag_Cold
Boolean list Nag_True
Boolean print_80ch Nag_True
Nag_PrintType print_level Nag_Soln_Iter
Nag_PrintType minor_print_level Nag_NoPrint
Nag_DPrintType print_deriv Nag_D_Print
char outfile[80] stdout
char **crnames NULL
Boolean obj_deriv Nag_True
Boolean con_deriv Nag_True
Nag_GradChk verify_grad Nag_SimpleCheck
Integer obj_check_start 1
Integer obj_check_stop nonln
Integer con_check_start 1
Integer con_check_stop njnln

double f_diff_int
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f_prec

p
double c_diff_int f_prec0:33

Nag_CrashType crash Nag_NoCrash or Nag_CrashThreeTimes
Integer expand_freq 10000
Integer factor_freq 50 or 100
Integer fcheck 60
Integer hess_freq 99999999
Integer hess_update 20
Integer iter_lim 10000
Integer major_iter_lim 1000
Integer minor_iter_lim 500
Integer part_price 1 or 10
Integer scale_opt 1 or 2
Integer max_sb min 500;n; �nþ 1ð Þ
double crash_tol 0.1
double elastic_wt 1.0 or 100.0

double f_prec �0:8

double inf_bound 1020

double linesearch_tol 0.9
double lu_den_tol 0.6

double lu_sing_tol �0:67

double lu_factor_tol 5.0 or 100.0
double lu_update_tol 5.0 or 10.0
double major_feas_tol

ffiffi
�

p

double major_opt_tol
ffiffi
�

p

double major_step_lim 2.0
double minor_feas_tol

ffiffi
�

p

double minor_opt_tol
ffiffi
�

p

double nz_coef 5.0

double pivot_tol �0:67

double scale_tol 0.9

double unbounded_obj 1015

double inf_step max inf_bound; 1020Þ
�

double violation_limit 10.0
Boolean deriv_linesearch Nag_True
Boolean feas_exit Nag_False
Nag_HessianType hess_storage Nag_HessianFull or Nag_HessianLimited

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.33

Nag_DirectionType direction Nag_Minimize
Integer *state size nþm
double *lambda size nþm
Integer iter
Integer major_iter
Integer nsb
Integer nf

11.2 Description of the Optional Arguments

– Nag_Start Default ¼ Nag_Cold

On entry: indicates how a starting basis is to be obtained.

If start ¼ Nag_Cold, then an initial Crash procedure will be used to choose an initial basis.

If start ¼ Nag_Warm, then the user must provide a valid definition of the optional parameters state and
nsb. (These may be the output of a previous call.)

A warm start will be advantageous if a good estimate of the initial working set is available – for example,
when nag_opt_nlp_sparse (e04ugc) is called repeatedly to solve related problems.

Constraint: start ¼ Nag_Cold or Nag_Warm.

– Nag_Boolean Default ¼ NagTrue

On entry: if list ¼ NagTrue the parameter settings in the call to nag_opt_nlp_sparse (e04ugc) will be
printed.

– Nag_Boolean Default ¼ NagTrue

On entry: controls the maximum length of each line of output produced by major and minor iterations and
by the printing of the solution.

If print_80ch ¼ NagTrue (the default), then a maximum of 80 characters per line is printed.

If print_80ch ¼ NagFalse, then a maximum of 120 characters per line is printed.

(See also print_level and minor_print_level below.)

– Nag_PrintType Default ¼ Nag_Soln_Iter

On entry: the level of results printout produced by nag_opt_nlp_sparse (e04ugc) at each major iteration, as
indicated below. A detailed description of the printed output is given in Section 5.1 and Section 11.3.
(See also minor_print_level, below.)

Nag_NoPrint No output.

Nag_Soln The final solution only.

Nag_Iter One line of output for each major iteration (no printout of the final solution).

Nag_Soln_Iter The final solution and one line of output for each iteration.

Nag_Soln_Iter_Full The final solution, one line of output for each major iteration, matrix statistics
(initial status of rows and columns, number of elements, density, biggest and
smallest elements, etc.), details of the scale factors resulting from the scaling
procedure (if scale_opt ¼ 1 or 2; see below), basis factorization statistics and
details of the initial basis resulting from the Crash procedure (if
start ¼ Nag_Cold and crash 6¼ Nag_NoCrash).

Note that the output for each line of major iteration and for the solution printout contains a maximum of
80 characters if print_80ch ¼ NagTrue, and a maximum of 120 characters otherwise. However, if
print_level ¼ Nag_Soln_Iter_Full, some printout may exceed 80 characters even when
print_80ch ¼ NagTrue.

Constraint: print_level ¼ Nag_NoPrint, Nag_Soln, Nag_Iter, Nag_Soln_Iter or Nag_Soln_Iter_Full.

e04ugc NAG C Library Manual

e04ugc.34 [NP3660/8]

– Nag_PrintType Default ¼ Nag_NoPrint

On entry: controls the amount of printout produced by the minor iterations of nag_opt_nlp_sparse (e04ugc)
(i.e., the iterations of the quadratic programming algorithm), as indicated below. A detailed description of
the printed output is given in Section 8.1 (default output at each iteration) and in Section 11.3. (See also
print_level above.)

If minor_print_level ¼ Nag_NoPrint, no output is produced.

If minor_print_level ¼ Nag_Iter, the following output is produced for each minor iteration:

if print_80ch ¼ NagTrue, one line of summary output (� 80 characters);
if print_80ch ¼ NagFalse, one long line of output (� 120 characters).

Constraint: minor_print_level ¼ Nag_NoPrint or Nag_Iter.

– Nag_DPrintType Default ¼ Nag_D_Print

On entry: controls whether the results of any derivative checking are printed out (see also the optional
parameter verify_grad).

If a component derivative check has been carried out, then full details will be printed if
print_deriv ¼ Nag_D_Print. If only a simple derivative check is requested, Nag_D_Print will produce
a statement indicating failure or success. To prevent any printout from a derivative check, set
print_deriv ¼ Nag_D_NoPrint.

Constraint: print_deriv ¼ Nag_D_NoPrint or Nag_D_Print.

– const char[80] Default ¼ stdout

On entry: the name of the file to which results should be printed. If outfile½0� ¼ ‘n0’ then the stdout
stream is used.

– char ** a Default ¼ NULL

On entry: if crnames is not NULL then it must point to an array of nþm character strings with
maximum string length 8, containing the names of the columns and rows (i.e., variables and constraints) of
the problem. Thus, crnames½j� 1� contains the name of the the jth column (variable), for j ¼ 1; 2; . . . ; n,
and crnames½nþ i� 1� contains the names of the ith row (constraint), for i ¼ 1; 2; . . . ;m. If supplied, the
names are used in the solution output (see Section 8.1 and Section 11.3).

Constraint: crnames ¼ NULL or strlen crnames½i� 1�Þ � 8ð , for i ¼ 1; 2; . . . ; nþm.

– Nag_Boolean Default ¼ NagTrue

On entry: this argument indicates whether all elements of the objective gradient are provided by the user in
function objfun. If none or only some of the elements are being supplied by objfun then obj_deriv
should be set to Nag_False.

Whenever possible all elements should be supplied, since nag_opt_nlp_sparse (e04ugc) is more reliable
and will usually be more efficient when all derivatives are exact.

If obj_deriv ¼ NagFalse, nag_opt_nlp_sparse (e04ugc) will approximate unspecified elements of the
objective gradient using finite differences. The computation of finite-difference approximations usually
increases the total run-time, since a call to objfun is required for each unspecified element. Furthermore,
less accuracy can be attained in the solution (see Chapter 8 of Gill et al. (2002), for a discussion of
limiting accuracy).

At times, central differences are used rather than forward differences, in which case twice as many calls to
objfun are needed. (The switch to central differences is not under the user’s control.)

– Nag_Boolean Default ¼ NagTrue

On entry: this argument indicates whether all elements of the constraint Jacobian are provided by the user
in function confun (or possibly directly in a for constant elements). If none or only some of the
derivatives are being supplied then con_deriv should be set to Nag_False.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.35

Whenever possible all elements should be supplied, since nag_opt_nlp_sparse (e04ugc) is more reliable
and will usually be more efficient when all derivatives are exact.

If con_deriv ¼ NagFalse, nag_opt_nlp_sparse (e04ugc) will approximate unspecified elements of the
constraint Jacobian. One call to confun will be needed for each variable for which partial derivatives are
not available. For example, if the sparsity of the constraint Jacobian has the form

� � �
? ?

� ?
� �

0
BB@

1
CCA

where ‘�’ indicates an element provided by the user and ‘?’ indicates an unspecified element,
nag_opt_nlp_sparse (e04ugc) will call confun twice: once to estimate the missing element in column 2,
and again once to estimate the two missing elements in column 3. (Since columns 1 and 4 are known,
they require no calls to confun.)

At times, central differences are used rather than forward differences, in which case twice as many calls to
confun are needed. (The switch to central differences is not under the user’s control.)

– Nag_GradChk Default ¼ Nag_SimpleCheck

On entry: specifies the level of derivative checking to be performed by nag_opt_nlp_sparse (e04ugc) on
the gradient elements computed by the user-supplied functions objfun and confun. Gradients are verified
at the first point that satisfies the linear constraints and the upper and lower bounds. Unspecified gradient
elements are not checked, and hence they result in no overhead.

The following values are available:

Nag_NoCheck No derivative checking is performed.

Nag_SimpleCheck Only a cheap test is performed, requiring three calls to objfun and two calls to
confun. Note that no checks are carried out if every column of the constraint
gradients (Jacobian) contains a missing element.

Nag_CheckObj Individual objective gradient elements will be checked using a reliable (but
more expensive) test. If print_deriv ¼ Nag_D_Print (see above), a key of the
form OK or BAD? indicates whether or not each element appears to be correct.

Nag_CheckCon Individual columns or the constraint gradient (Jacobian) will be checked using a
reliable (but more expensive) test. If print_deriv ¼ Nag_D_Print (see above),
a key of the form OK or BAD? indicates whether or not each element appears to
be correct.

Nag_CheckObjCon Check both constraint and objective gradients (in that order) as described for
Nag_CheckCon and Nag_CheckObj (respectively).

This component check will be made in the range specified by the optional parameters obj_check_start and
obj_check_stop for the objective gradient, with default values 1 and nonln, respectively. For the
constraint gradient the range is specified by con_check_start and con_check_stop, with default values 1
and njnln.

Constraint: verify_grad ¼ Nag_NoCheck, Nag_SimpleCheck, Nag_CheckObj, Nag_CheckCon or
Nag_CheckObjCon.

– Integer i Default ¼ 1
– Integer i Default ¼ nonln

These options take effect only when verify_grad ¼ Nag_CheckObj or Nag_CheckObjCon.

On entry: these parameters may be used to control the verification of gradient elements computed by the
function objfun. For example, if the first 30 elements of the objective gradient appear to be correct in an
earlier run, so that only element 31 remains questionable, it is reasonable to specify obj_check_start ¼ 31.

Constraint: 1 � obj_check_start � obj_check_stop � nonln.

e04ugc NAG C Library Manual

e04ugc.36 [NP3660/8]

– Integer i Default ¼ 1
– Integer i Default ¼ njnln

These options take effect only when verify_grad ¼ Nag_CheckCon or Nag_CheckObjCon.

On entry: these parameters may be used to control the verification of the Jacobian elements computed by
the function confun. For example, if the first 30 columns of the constraint Jacobian appeared to be correct
in an earlier run, so that only column 31 remains questionable, it is reasonable to specify
con_check_start ¼ 31.

Constraint: 1 � con_check_start � con_check_stop � njnln.

– double r Default ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f_prec

p
This option does not apply when both obj_deriv and con_deriv are true.

On entry: f_diff_int defines an interval used to estimate derivatives by finite differences in the following
circumstances:

(a) For verifying the objective and/or constraint gradients (see the description of the optional parameter
verify_grad).

(b) For estimating unspecified elements of the objective and/or the constraint Jacobian matrix.

Using the notation r ¼ f_diff_int, a derivative with respect to xj is estimated by perturbing that element of

x to the value xj þ r 1þ xj

� �

, and then evaluating f xð Þ and/or F xð Þ (as appropriate) at the perturbed point.
If the functions are well scaled, the resulting derivative approximation should be accurate to O rð Þ.
Judicious alteration of f_diff_int may sometimes lead to greater accuracy. See Gill et al. (1981) for a
discussion of the accuracy in finite difference approximations.

Constraint: � � f_diff_int < 1:0.

– double r Default ¼ f_prec0:33

This option does not apply when both obj_deriv and con_deriv are true.

On entry: c_diff_int is used near an optimal solution in order to obtain more accurate (but more expensive)
estimates of gradients. This requires twice as many function evaluations as compared to using forward
difference (see the optional parameter f_diff_int). Using the notation r ¼ c_diff_int, the interval used for
the jth variable is hj ¼ r 1þ xj

� �
. If the functions are well scaled, the resultant gradient estimates should

be accurate to O r2
� �

. The switch to central differences (not under user-control) is indicated by C at the end
of each line of intermediate printout produced by the major iterations (see Section 5.1). The use of finite
differences is discussed under the option f_diff_int.

Constraint: � � c_diff_int < 1:0.

– Nag_CrashType Default ¼ Nag_NoCrash or
Nag_CrashThreeTimes

This option does not apply when start ¼ Nag_Warm.

On entry: the default value of crash ¼ Nag_NoCrash if there are any nonlinear constraints, and
crash ¼ Nag_CrashThreeTimes otherwise.

If start ¼ Nag_Cold, an internal Crash procedure is used to select an initial basis from the various rows
and columns of the constraint matrix A �Ið Þ. The value of crash determines which rows and columns
of A are initially eligible for the basis, and how many times the Crash procedure is called. Columns of �I
are used to pad the basis where necessary. The possible choices for crash are as follows:

Nag_NoCrash The initial basis contains only slack variables: B ¼ I .
Nag_CrashOnce The Crash procedure is called once (looking for a triangular basis in all rows

and columns of A).

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.37

Nag_CrashTwice The Crash procedure is called twice (if there are any nonlinear constraints).
The first call looks for a triangular basis in linear rows, and the iteration
proceeds with simplex iterations until the linear constraints are satisfied. The
Jacobian is then evaluated for the first major iteration and the Crash procedure
is called again to find a triangular basis in the nonlinear rows (whilst retaining
the current basis for linear rows).

Nag_CrashThreeTimes The Crash procedure is called up to three times (if there are any nonlinear
constraints). The first two calls treat linear equality constraints and linear
inequality constraints separately. The Jacobian is then evaluated for the first
major iteration and the Crash procedure is called again to find a triangular basis
in the nonlinear rows (whilst retaining the current basis for linear rows).

If crash 6¼ Nag_NoCrash, certain slacks on inequality rows are selected for the basis first. (If crash ¼
Nag_CrashTwice or Nag_CrashThreeTimes, numerical values are used to exclude slacks that are close
to a bound.) The Crash procedure then makes several passes through the columns of A, searching for a
basis matrix that is essentially triangular. A column is assigned to ‘pivot’ on a particular row if the column
contains a suitably large element in a row that has not yet been assigned. (The pivot elements ultimately
form the diagonals of the triangular basis.) For remaining unassigned rows, slack variables are inserted to
complete the basis.

Constraint: crash ¼ Nag_NoCrash, Nag_CrashOnce, Nag_CrashTwice or Nag_CrashThreeTimes.

– Integer i Default ¼ 10000

On entry: this option is part of the EXPAND anti-cycling procedure due to Gill et al. (1989), which is
designed to make progress even on highly degenerate problems.

For linear models, the strategy is to force a positive step at every iteration, at the expense of violating the
constraints by a small amount. Suppose that the value of minor_feas_tol (see below) is �. Over a period
of expand_freq iterations, the feasibility tolerance actually used by nag_opt_nlp_sparse (e04ugc) (i.e., the
working feasibility tolerance) increases from 0.5 to � (in steps of 0:5�=expand_freq).

For nonlinear models, the same procedure is used for iterations in which there is only one superbasic
variable. (Cycling can only occur when the current solution is at a vertex of the feasible region.) Thus,
zero steps are allowed if there is more than one superbasic variable, but otherwise positive steps are
enforced.

Increasing the value of expand_freq helps reduce the number of slightly infeasible nonbasic basic
variables (most of which are eliminated during the resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see pivot_tol below).

If expand_freq ¼ 0, the value 99999999 is used and effectively no anti-cycling procedure is invoked.

Constraint: expand_freq � 0.

– Integer i Default ¼ 50 or 100

On entry: factor_freq specifies the maximum number of basis changes that will occur between
factorizations of the basis matrix. The default value of factor_freq is 50 if there are any nonlinear
constraints, and 100 otherwise.

For linear problems, the basis factors are usually updated at every iteration. The default value
factor_freq ¼ 100 is reasonable for typical problems, particularly those that are extremely sparse and well-
scaled.

When the objective function is nonlinear, fewer basis updates will occur as the solution is approached.
The number of iterations between basis factorizations will therefore increase. During these iterations a test
is made regularly according to the value of the optional parameter fcheck (see below) to ensure that the
general constraints are satisfied. If necessary, the basis will be refactorized before the limit of factor_freq
updates is reached.

Constraint: factor_freq � 0.

e04ugc NAG C Library Manual

e04ugc.38 [NP3660/8]

– Integer i Default ¼ 60

On entry: every fcheck-th iteration after the most recent basis iteration, a numerical test is made to see if
the current solution x; sð Þ satisfies the general linear constraints (including any linearized nonlinear
constraints). The constraints are of the form Ax� s ¼ b, where s is the set of slack variables. If the
largest element of the residual vector r ¼ b� Axþ s is judged to be too large, the current basis is
refactorized and the basic variables recomputed to satisfy the general constraints more accurately. If
fcheck ¼ 0, the value fcheck ¼ 99999999 is used and effectively no checks are made.

Constraint: fcheck � 0.

– Integer i Default ¼ 99999999

This option only takes effect when hess_storage ¼ Nag_HessianFull.

On entry: this option forces the approximate Hessian formed from hess_freq BFGS updates to be reset to
the identity matrix upon completion of a major iteration.

Constraint: hess_freq > 0.

– Integer i Default ¼ 20

This option only takes effect when hess_storage ¼ Nag_HessianLimited.

On entry: if hess_storage ¼ Nag_HessianLimited (see below), this option defines the maximum number
of pairs of Hessian update vectors that are to be used to define the quasi-Newton approximate Hessian.
Once the limit of hess_update updates is reached, all but the diagonal elements of the accumulated
updates are discarded and the process starts again. Broadly speaking, the more updates that are stored, the
better the quality of the approximate Hessian. On the other hand, the more vectors that are stored, the
greater the cost of each QP iteration.

The default value of hess_update is likely to give a robust algorithm without significant expense, but
faster convergence may often be obtained with far fewer updates (e.g., hess_update ¼ 5).

Constraint: hess_update � 0.

– Integer i Default ¼ 10000

On entry: specifies the maximum number of minor iterations allowed (i.e., iterations of the simplex method
or the QP algorithm), summed over all major iterations. (See also major_iter_lim and minor_iter_lim
below.)

Constraint: iter_lim > 0.

– Integer i Default ¼ 1000

On entry: specifies the maximum number of major iterations allowed before termination. It is intended to
guard against an excessive number of linearizations of the nonlinear constraints. Setting
major_iter_lim ¼ 0 and print_deriv ¼ Nag_D_Print (see above) means that the objective and constraint
gradients will be checked if verify_grad 6¼ Nag_NoCheck (see above), but no iterations will be
performed.

Constraint: major_iter_lim � 0.

– Integer i Default ¼ 500

On entry: specifies the maximum number of iterations allowed between successive linearizations of the
nonlinear constraints. A value in the range 10 � i � 50 prevents excessive effort being expended on early
major iterations, but allows later QP subproblems to be solved to completion. Note that an extra m minor
iterations are allowed if the first QP subproblem to be solved starts with the all-slack basis B ¼ I . (See
crash above.)

In general, it is unsafe to specify values as small as 1 or 2 (because even when an optimal solution has
been reached, a few minor iterations may be needed for the corresponding QP subproblem to be recognised
as optimal).

Constraint: minor_iter_lim � 0.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.39

– Integer i Default ¼ 1 or 10

On entry: this option is recommended for large problems that have significantly more variables than
constraints (i.e., n � m). The default value of part_price is 1 if there are any nonlinear constraints, and
10 otherwise. It reduces the work required for each ‘pricing’ operation (i.e., when a nonbasic variable is
selected to become superbasic). The possible choices for part_price are the following.

part_price Meaning
1 All columns of the constraint matrix A �Ið Þ are searched.

� 2 Both A and I are partitioned to give part_price roughly equal segments Aj; I j, for
j ¼ 1; 2; . . . ; p (modulo p). If the previous pricing search was successful on Aj; I j, the next
search begins on the segments Ajþ1; I jþ1. If a reduced gradient is found that is larger than
some dynamic tolerance, the variable with the largest such reduced gradient (of appropriate
sign) is selected to enter the basis. If nothing is found, the search continues on the next
segments Ajþ2; I jþ2, and so on.

Constraint: part_price > 0.

– Integer i Default ¼ 1 or 2

On entry: the default value of scale_opt is 1 if there are any nonlinear constraints, and 2 otherwise. This
option enables you to scale the variables and constraints using an iterative procedure due to Fourer (1982),
which attempts to compute row scales ri and column scales cj such that the scaled matrix coefficients

�aij ¼ aij � cj=ri
� �

are as close as possible to unity. (The lower and upper bounds on the variables and

slacks for the scaled problem are redefined as �lj ¼ lj=cj and �uj ¼ uj=cj respectively, where cj � rj�n if
j > n.) The possible choices for scale_opt are the following.

scale_opt Meaning
0 No scaling is performed. This is recommended if it is known that the elements of x and the

constraint matrix A (along with its Jacobian) never become large (say, > 1000).
1 All linear constraints and variables are scaled. This may improve the overall efficiency of the

function on some problems.
2 All constraints and variables are scaled. Also, an additional scaling is performed that takes

into account columns of A �Ið Þ that are fixed or have positive lower bounds or negative
upper bounds.

If there are any nonlinear constraints present, the scale factors depend on the Jacobian at the
first point that satisfies the linear constraints and the upper and lower bounds. The setting
scale_opt ¼ 2 should therefore be used only if a ‘good’ starting point is available and the
problem is not highly nonlinear.

Constraint: scale_opt ¼ 0, 1 or 2.

– Integer i Default ¼ min 500; n; �nþ 1ð Þ
This option does not apply to linear problems.

On entry: max_sb places a limit on the storage allocated for superbasic variables. Ideally, the value of
max_sb should be set slightly larger than the ‘number of degrees of freedom’ expected at the solution.

For nonlinear problems, the number of degrees of freedom is often called the ‘number of independent
variables’. Normally, the value of max_sb need not be greater than �nþ 1 (where �n ¼ max nonln; njnlnð Þ),
but for many problems it may be considerably smaller. (This will save storage if �n is very large.)

Constraint: max_sb > 0.

– double r Default ¼ 0:1

On entry: this option allows the Crash procedure to ignore certain ‘small’ non-zero elements in the
columns of A while searching for a triangular basis. If amax is the largest element in the jth column, other
non-zeros aij in the column are ignored if aij

 � amax � crash_tol.

e04ugc NAG C Library Manual

e04ugc.40 [NP3660/8]

When crash_tol > 0, the basis obtained by the Crash procedure may not be strictly triangular, but it is
likely to be non-singular and almost triangular. The intention is to obtain a starting basis containing more
columns of A and fewer (arbitrary) slacks. A feasible solution may be reached earlier on some problems.

Constraint: 0:0 � crash_tol < 1:0.

– double r Default ¼ 1:0 or 100.0

On entry: this option defines the initial weight � associated with problem (8). The default value of
elastic_wt is 100.0 if there are any nonlinear constraints, and 1.0 otherwise.

At any given major iteration k, elastic mode is entered if the QP subproblem is infeasible or the QP dual
variables (Lagrange multipliers) are larger in magnitude than elastic_wt� 1þ g xkð Þk k2

� �
, where g is the

objective gradient. In either case, the QP subproblem is re-solved in elastic mode with
� ¼ elastic_wt� 1þ g xkð Þk k2

� �
.

Constraint: elastic_wt � 0:0.

– double r Default ¼ �0:8

On entry: this option defines the relative function precision �R, which is intended to be a measure of the
relative accuracy with which the nonlinear functions can be computed. For example, if f xð Þ (or Fi xð Þ) is
computed as 1000.56789 for some relevant x and the first 6 significant digits are known to be correct, the

appropriate value for �R would be 10�6.

Ideally the functions f xð Þ or Fi xð Þ should have magnitude of order 1. If all functions are substantially less
than 1 in magnitude, �R should be the absolute precision. For example, if f xð Þ (or Fi xð Þ) is computed as

1:23456789� 10�4 for some relevant x and the first 6 significant digits are known to be correct, the

appropriate value for �R would be 10�10.

The choice of �R can be quite complicated for badly scaled problems; see Chapter 8 of Gill et al. (1981)
for a discussion of scaling techniques. The default value is appropriate for most simple functions that are
computed with full accuracy.

In some cases the function values will be the result of extensive computation, possibly involving an
iterative procedure that can provide few digits of precision at reasonable cost. Specifying an appropriate
value of f_prec may therefore lead to savings, by allowing the linesearch procedure to terminate when the
difference between function values along the search direction becomes as small as the absolute error in the
values.

Constraint: � � f_prec < 1:0.

– double r Default ¼ 1020

On entry: inf_bound defines the ‘infinite’ bound in the definition of the problem constraints. Any upper
bound greater than or equal to inf_bound will be regarded as þ1 (and similarly any lower bound less
than or equal to �inf_bound will be regarded as �1).

Constraint: inf_bound > 0:0.

– double r Default ¼ 0:9

On entry: this option controls the accuracy with which a steplength will be located along the direction of
search at each iteration. At the start of each linesearch a target directional derivative for the Lagrangian
merit function is identified. The value of linesearch_tol therefore determines the accuracy to which this
target value is approximated.

The default value linesearch_tol ¼ 0:9 requests an inaccurate search, and is appropriate for most
problems, particularly those with any nonlinear constraints.

If the nonlinear functions are cheap to evaluate, a more accurate search may be appropriate; try
linesearch_tol ¼ 0:1, 0.01 or 0.001. The number of major iterations required to solve the problem might
decrease.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.41

If the nonlinear functions are expensive to evaluate, a less accurate search may be appropriate. If all
derivatives are available (con_deriv and obj_deriv are both true), try linesearch_tol ¼ 0:99. (The number
of major iterations required to solve the problem might increase, but the total number of function
evaluations may decrease enough to compensate.)

If some derivatives are not available (at least one of con_deriv or obj_deriv is false), a moderately
accurate search may be appropriate; try linesearch_tol ¼ 0:5. Each search will (typically) require only
1� 5 function values, but many function calls will then be needed to estimate the missing gradients for the
next iteration.

Constraint: 0:0 � linesearch_tol < 1:0.

– double r Default ¼ 0:6

On entry: this option defines the density tolerance used during the LU factorization of the basis matrix.
Columns of L and rows of U are formed one at a time, and the remaining rows and columns of the basis
are altered appropriately. At any stage, if the density of the remaining matrix exceeds lu_den_tol, the
Markowitz strategy for choosing pivots is terminated. The remaining matrix is then factorized using a
dense LU procedure. Increasing the value of lu_den_tol towards unity may give slightly sparser LU
factors, with a slight increase in factorization time.

Constraint: lu_den_tol � 0:0.

– double r Default ¼ �0:67

On entry: this option defines the singularity tolerance used to guard against ill-conditioned basis matrices.
Whenever the basis is refactorized, the diagonal elements of U are tested as follows. If ujj

 � lu_sing_tol

or ujj

 < lu_sing_tol� max

i
uij

, the jth column of the basis is replaced by the corresponding slack

variable. This is most likely to occur when start ¼ Nag_Warm, or at the start of a major iteration.

In some cases, the Jacobian matrix may converge to values that make the basis exactly singular (e.g., a
whole row of the Jacobian matrix could be zero at an optimal solution). Before exact singularity occurs,
the basis could become very ill-conditioned and the optimization could progress very slowly (if at all).
Setting lu_sing_tol ¼ 0:00001 (say) may therefore help cause a judicious change of basis in such
situations.

Constraint: lu_sing_tol > 0:0.

– double r Default ¼ 5:0 or 100.0
– double r Default ¼ 5:0 or 10.0

On entry: lu_factor_tol and lu_update_tol affect the stability and sparsity of the basis factorization
B ¼ LU , during refactorization and updates respectively. The default values are
lu_factor_tol ¼ lu_update_tol ¼ 5:0 if there are any nonlinear constraints, and lu_factor_tol ¼ 100:0
and lu_update_tol ¼ 10:0 otherwise.

The lower triangular matrix L can be seen as a product of matrices of the form

1
� 1

� �

where the multipliers � satisfy �j j < lu_factor_tol during refactorization or �j j < lu_update_tol during
update. The default values of lu_factor_tol and lu_update_tol usually strike a good compromise between
stability and sparsity. Smaller values of lu_factor_tol and lu_update_tol favour stability, while larger
values favour sparsity. For large and relatively dense problems, setting lu_factor_tol to 10.0 or 5.0 (say)
may give a marked improvement in sparsity without impairing stability to a serious degree. Note that for
problems involving band matrices it may be necessary to reduce lu_factor_tol and/or lu_update_tol in
order to achieve stability.

Constraints:

lu_factor_tol � 1:0;
lu_update_tol � 1:0.

e04ugc NAG C Library Manual

e04ugc.42 [NP3660/8]

– double r Default ¼
ffiffi
�

p

On entry: this option specifies how accurately the nonlinear constraints should be satisfied. The default
value is appropriate when the linear and nonlinear constraints contain data to approximately that accuracy.
A larger value may be appropriate if some of the problem functions are known to be of low accuracy.

Let rowerr be defined as the maximum nonlinear constraint violation normalized by the size of the
solution. It is required to satisfy

rowerr ¼ max
i

violi
x; sð Þk k � major_feas_tol,

where violi is the violation of the ith nonlinear constraint.

Constraint: major_feas_tol > �.

– double r Default ¼
ffiffi
�

p

On entry: this option specifies the final accuracy of the dual variables. If nag_opt_nlp_sparse (e04ugc)
terminates with fail.code ¼ NE_NOERROR, a primal and dual solution x; s; �ð Þ will have been computed
such that

maxgap ¼ max
j

gapj
�k k � major_opt_tol,

where gapj is an estimate of the complementarity gap for the jth variable and �k k is a measure of the size
of the QP dual variables (or Lagrange multipliers) given by

�k k ¼ max
	ffiffiffiffi
m

p ; 1

� �
, where 	 ¼

Xm
i¼1

�ij j.

It is included to make the tests independent of a scale factor on the objective function. Specifically, gapj is

computed from the final QP solution using the reduced gradients dj ¼ gj � �Taj, where gj is the jth
element of the objective gradient and aj is the associated column of the constraint matrix A �Ið Þ:

gapj ¼
dj min xj � lj; 1

� �
if dj � 0;

�dj min uj � xj; 1
� �

if dj < 0.

�

Constraint: major_opt_tol > 0:0.

– double r Default ¼ 2:0

On entry: this option limits the change in x during a linesearch. It applies to all nonlinear problems once a
‘feasible solution’ or ‘feasible subproblem’ has been found.

A linesearch determines a step � in the interval 0 < � � �, where � ¼ 1 if there are any nonlinear
constraints, or the step to the nearest upper or lower bound on x if all the constraints are linear. Normally,
the first step attempted is �1 ¼ min 1; �ð Þ.

In some cases, such as f xð Þ ¼ aebx or f xð Þ ¼ axb, even a moderate change in the elements of x can lead to
floating-point overflow. The optional parameter major_step_lim is therefore used to define a step limit ��
given by

�� ¼
major_step_lim 1þ xk k2

� �
pk k2

,

where p is the search direction and the first evaluation of f xð Þ is made at the (potentially) smaller step
length �1 ¼ min 1; ��; �

� �
.

Wherever possible, upper and lower bounds on x should be used to prevent evaluation of nonlinear
functions at meaningless points. major_step_lim provides an additional safeguard. The default value
major_step_lim ¼ 2:0 should not affect progress on well-behaved functions, but values such as
major_step_lim ¼ 0:1 or 0.01 may be helpful when rapidly varying functions are present. If a small

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.43

value of major_step_lim is selected, a ‘good’ starting point may be required. An important application is
to the class of nonlinear least-squares problems.

Constraint: major_step_lim > 0:0.

– double r Default ¼
ffiffi
�

p

On entry: this option attempts to ensure that all variables eventually satisfy their upper and lower bounds
to within the tolerance minor_feas_tol. Since this includes slack variables, general linear constraints
should also be satisfied to within minor_feas_tol. Note that feasibility with respect to nonlinear
constraints is judged by the value of major_feas_tol (see above) and not by minor_feas_tol.

If the bounds and linear constraints cannot be satisfied to within minor_feas_tol, the problem is declared
infeasible. Let Sinf be the corresponding sum of infeasibilities. If Sinf is quite small, it may be
appropriate to raise minor_feas_tol by a factor of 10 or 100. Otherwise, some error in the data should be
suspected.

If scale_opt � 1 (see above), feasibility is defined in terms of the scaled problem (since it is more likely to
be meaningful).

Nonlinear functions will only be evaluated at points that satisfy the bounds and linear constraints. If there
are regions where a function is undefined, every effort should be made to eliminate these regions from the
problem. For example, if f x1; x2ð Þ ¼ ffiffiffiffiffi

x1
p þ log x2ð Þ, it is essential to place lower bounds on both x1 and

x2. If the value minor_feas_tol ¼ 10�6 is used, the bounds x1 � 10�5 and x2 � 10�4 might be
appropriate. (The log singularity is more serious; in general, you should attempt to keep x as far away
from singularities as possible.)

In reality, minor_feas_tol is used as a feasibility tolerance for satisfying the bounds on x and s in each QP
subproblem. If the sum of infeasibilities cannot be reduced to zero, the QP subproblem is declared
infeasible and the function is then in elastic mode thereafter (with only the linearized nonlinear constraints
defined to be elastic). (See also elastic_wt above.)

Constraint: minor_feas_tol > �.

– double r Default ¼
ffiffi
�

p

On entry: this option is used to judge optimality for each QP subproblem. Let the QP reduced gradients be

dj ¼ gj � �Taj, where gj is the jth element of the QP gradient, aj is the associated column of the QP
constraint matrix and � is the set of QP dual variables.

By construction, the reduced gradients for basic variables are always zero. The QP subproblem will be
declared optimal if the reduced gradients for nonbasic variables at their upper or lower bounds satisfy

dj
�k k � �minor_opt_tol or

dj
�k k � minor_opt_tol

respectively, and if
djj j
�k k � minor_opt_tol for superbasic variables.

Note that �k k is a measure of the size of the dual variables. It is included to make the tests independent of
a scale factor on the objective function. (The value of �k k actually used is defined in the description of
the optional parameter major_opt_tol above.)

If the objective is scaled down to be very small, the optimality test reduces to comparing dj against
minor_opt_tol.

Constraint: minor_opt_tol > 0:0.

– double r Default ¼ 5:0

This option is ignored if hess_storage ¼ Nag_HessianFull.

On entry: nz_coef defines how much memory is initially allocated for the basis factors: by default,
nag_opt_nlp_sparse (e04ugc) allocates approximatively nnz� nz_coef reals and 2� nnz� nz_coef
integers in order to compute and store the basis factors. If at some point this appears not to be enough,

e04ugc NAG C Library Manual

e04ugc.44 [NP3660/8]

an internal warm restart with more memory is automatically attempted, so that nag_opt_nlp_sparse
(e04ugc) should complete anyway. Thus this option generally does not need to be modified.

However, if a lot of memory is available, it is possible to increase the value of nz_coef such as to limit the
number of compressions of the work space and possibly avoid internal restarts. On the other hand, for
large problems where memory might be critical, decreasing the value of nz_coef can sometimes save some
memory.

Constraint: nz_coef � 1:0.

– double r Default ¼ �0:67

On entry: this option is used during the solution of QP subproblems to prevent columns entering the basis
if they would cause the basis to become almost singular.

When x changes to xþ �p for some specified search direction p, a ‘ratio test’ is used to determine which
element of x reaches an upper or lower bound first. The corresponding element of p is called the pivot
element. Elements of p are ignored (and therefore cannot be pivot elements) if they are smaller than
pivot_tol.

It is common in practice for two (or more) variables to reach a bound at essentially the same time. In such
cases, the optional parameter minor_feas_tol (see above) provides some freedom to maximize the pivot
element and thereby improve numerical stability. Excessively small values of minor_feas_tol should
therefore not be specified. To a lesser extent, the optional parameter expand_freq (see above) also
provides some freedom to maximize the pivot element. Excessively large values of expand_freq should
therefore not be specified.

Constraint: pivot_tol > 0:0.

– double r Default ¼ 0:9

On entry: this option is used to control the number of scaling passes to be made through the constraint
matrix A. At least 3 (and at most 10) passes will be made. More precisely, let ap denote the largest

column ratio (i.e.,
‘biggest’ element
‘smallest’ element in some sense) after the pth scaling pass through A. The scaling

procedure is terminated if ap � ap�1 � scale_tol for some p � 3. Thus, increasing the value of scale_tol
from 0.9 to 0.99 (say) will probably increase the number of passes through A.

Constraint: 0:0 < scale_tol < 1:0.

– double r Default ¼ 1015

– double r Default ¼ max inf_bound; 1020Þ
�

On entry: these options are intended to detect unboundedness in nonlinear problems. During the
linesearch, the objective function f is evaluated at points of the form xþ �p, where x and p are fixed and
� varies. If fj j exceeds unbounded_obj or � exceeds inf_step, the iterations are terminated and the
function returns with fail.code ¼ NE_MAYBE_UNBOUNDED.

If singularities are present, unboundedness in f xð Þ may manifest itself by a floating-point overflow during
the evaluation of f xþ �pð Þ, before the test against unbounded_obj can be made.

Unboundedness in x is best avoided by placing finite upper and lower bounds on the variables.

Constraints:

unbounded_obj > 0:0;
inf_step > 0:0.

– double r Default ¼ 10:0

On entry: this option defines an absolute limit on the magnitude of the maximum constraint violation after
the linesearch. Upon completion of the linesearch, the new iterate xkþ1 satisfies the condition

vi xkþ1ð Þ � violation_limit�max 1; vi x0ð Þð Þ,
where x0 is the point at which the nonlinear constraints are first evaluated and vi xð Þ is the ith nonlinear
constraint violation vi xð Þ ¼ max 0; li�Fi� Fi xð Þ;Fi xð Þ � uið Þ.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.45

The effect of the violation limit is to restrict the iterates to lie in an expanded feasible region whose size
depends on the magnitude of violation_limit. This makes it possible to keep the iterates within a region
where the objective function is expected to be well-defined and bounded below (or above in the case of
maximization). If the objective function is bounded below (or above in the case of maximization) for all
values of the variables, then violation_limit may be any large positive value.

Constraint: violation_limit > 0:0.

– Nag_Boolean Default ¼ NagTrue

On entry: at each major iteration, a linesearch is used to improve the value of the Lagrangian merit
function (6). The default linesearch uses safeguarded cubic interpolation and requires both function and
gradient values in order to compute estimates of the step �k . If some analytic derivatives are not provided
or deriv_linesearch ¼ NagFalse is specified, a linesearch based upon safeguarded quadratic interpolation
(which does not require the evaluation or approximation of any gradients) is used instead.

A nonderivative linesearch can be slightly less robust on difficult problems, and it is recommended that the
default be used if the functions and their derivatives can be computed at approximately the same cost. If
the gradients are very expensive to compute relative to the functions however, a nonderivative linesearch
may result in a significant decrease in the total run-time.

If deriv_linesearch ¼ NagFalse is selected, nag_opt_nlp_sparse (e04ugc) signals the evaluation of the
linesearch by calling objfun and confun with comm ! flag ¼ 0. Once the linesearch is complete, the
nonlinear functions are re-evaluated with comm ! flag ¼ 2. If the potential savings offered by a
nonderivative linesearch are to be fully realized, it is essential that objfun and confun be coded so that no
derivatives are computed when comm ! flag ¼ 0.

Constraint: deriv_linesearch ¼ NagTrue or NagFalse.

– Nag_Boolean Default ¼ NagFalse

This option is ignored if the value of major_iter_lim (see above) is exceeded, or the linear constraints are
infeasible.

On entry: if termination is about to occur at a point that does not satisfy the nonlinear constraints and
feas_exit ¼ NagTrue is selected, this option requests that additional iterations be performed in order to
find a feasible point (if any) for the nonlinear constraints. This involves solving a feasible point problem
in which the objective function is omitted.

Otherwise, this option requests no additional iterations be performed.

Constraint: feas_exit ¼ NagTrue or NagFalse.

– Nag_HessianType Default ¼ Nag_HessianFull or
Nag_HessianLimited

On entry: this option specifies the method for storing and updating the quasi-Newton approximation to the
Hessian of the Lagrangian function. The default is Nag_HessianFull if the number of nonlinear variables
�n (¼ max nonln; njnlnð Þ) < 75, and Nag_HessianLimited otherwise.

If hess_storage ¼ Nag_HessianFull, the approximate Hessian is treated as a dense matrix, and BFGS
quasi-Newton updates are applied explicitly. This is most efficient when the total number of nonlinear
variables is not too large (say, �n < 75). In this case, the storage requirement is fixed and you can expect
one-step Q-superlinear convergence to the solution.

hess_storage ¼ Nag_HessianLimited should only be specified when �n is very large. In this case a limited
memory procedure is used to update a diagonal Hessian approximation Hr a limited number of times.
(Updates are accumulated as a list of vector pairs. They are discarded at regular intervals after Hr has
been reset to their diagonal.)

Note that if hess_freq ¼ 20 (see above) is used in conjunction with hess_storage ¼ Nag_HessianFull, the
effect will be similar to using hess_storage ¼ Nag_HessianLimited in conjunction with
hess_update ¼ 20 (see above), except that the latter will retain the current diagonal during resets.

Constraint: hess_storage ¼ Nag_HessianLimited or Nag_HessianFull.

e04ugc NAG C Library Manual

e04ugc.46 [NP3660/8]

– Nag_DirectionType Default ¼ Nag_Minimize

On entry: if direction ¼ Nag_FeasiblePoint, nag_opt_nlp_sparse (e04ugc) attempts to find a feasible
point (if any) for the nonlinear constraints by omitting the objective function. It can also be used to check
whether the nonlinear constraints are feasible.

Otherwise, direction specifies the direction of optimization. It applies to both linear and nonlinear terms
(if any) in the objective function. Note that if two problems are the same except that one minimizes f xð Þ
and the other maximizes �f xð Þ, their solutions will be the same but the signs of the dual variables �i and
the reduced gradients dj will be reversed.

Constraint: direction ¼ Nag_FeasiblePoint, Nag_Minimize or Nag_Maximize.

– Integer * i Default memory ¼ nþm

On entry: state need not be set if the default option of start ¼ Nag_Cold is used as nþm values of
memory will be automatically allocated by nag_opt_nlp_sparse (e04ugc).

If the optional parameter start ¼ Nag_Warm has been chosen, state must point to a minimum of nþm
elements of memory. This memory will already be available if the options structure has been used in a
previous call to nag_opt_nlp_sparse (e04ugc) from the calling program, with start ¼ Nag_Cold and the
same values of n and m. If a previous call has not been made sufficient memory must be allocated by the
user.

If the user does supply a state vector and start ¼ Nag_Cold, then the first n elements of state must
specify the initial states of the problem variables. (The slacks s need not be initialized.) An internal Crash
procedure is then used to select an initial basis matrix B. The initial basis matrix will be triangular
(neglecting certain small elements in each column). It is chosen from various rows and columns of
A �Ið Þ. Possible values for state½j� 1� j ¼ 1; 2; . . . ;nð Þ are:

state½j� 1� State of xs½j� 1� during Crash procedure

0 or 1 Eligible for the basis
2 Ignored
3 Eligible for the basis (given preference over 0 or 1)

4 or 5 Ignored

If nothing special is known about the problem, or there is no wish to provide special information, the user
may set state½j� 1� ¼ 0 (and xs½j� 1� ¼ 0:0), for j ¼ 1; 2; . . . ; n. All variables will then be eligible for
the initial basis. Less trivially, to say that the jth variable will probably be equal to one of its bounds, the
user should set state½j� 1� ¼ 4 and xs½j� 1� ¼ bl½j� 1� or state½j� 1� ¼ 5 and xs½j� 1� ¼ bu½j� 1� as
appropriate.

Following the Crash procedure, variables for which state½j� 1� ¼ 2 are made superbasic. Other variables
not selected for the basis are then made nonbasic at the value xs½j� 1� if bl½j� 1� � xs½j� 1� � bu½j� 1�,
or at the value bl½j� 1� or bu½j� 1� closest to xs½j� 1�.
When start ¼ Nag_Warm, state and xs must specify the initial states and values, respectively, of the
variables and slacks x; sð Þ. If nag_opt_nlp_sparse (e04ugc) has been called previously with the same
values of n and m, state already contains satisfactory information.

Constraints:

if start ¼ Nag_Cold, 0 � state½j� 1� � 5, for j ¼ 1; 2; . . . ; n;
if start ¼ Nag_Warm, 0 � state½j� 1� � 3, for j ¼ 1; 2; . . . ;nþm.

On exit: the final states of the variables and slacks x; sð Þ. The significance of each possible value of state
is as follows:

state½j� 1� State of variable j Normal value of xs½j� 1�
0 Nonbasic bl½j� 1�
1 Nonbasic bu½j� 1�
2 Superbasic Between bl½j� 1� and bu½j� 1�
3 Basic Between bl½j� 1� and bu½j� 1�

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.47

If the problem is feasible (i.e., ninf ¼ 0), basic and superbasic variables may be outside their bounds by as
much as the optional parameter minor_feas_tol. Note that unless the optional parameter scale_opt ¼ 0,
minor_feas_tol applies to the variables of the scaled problem. In this case, the variables of the original
problem may be as much as 0.1 outside their bounds, but this is unlikely unless the problem is very badly
scaled.

Very occasionally some nonbasic variables may be outside their bounds by as much as minor_feas_tol,
and there may be some nonbasic variables for which xs½j� 1� lies strictly between its bounds.

If the problem is infeasible (i.e., ninf > 0), some basic and superbasic variables may be outside their
bounds by an arbitrary amount (bounded by sinf if scaling was not used scale_opt ¼ 0Þð .

– double * r Default memory ¼ nþm

On entry: if start ¼ Nag_Cold, the user does not need to provide memory for lambda, as nþm values of
memory will be automatically allocated by nag_opt_nlp_sparse (e04ugc). This is the recommended
method of use of lambda. However the user may supply memory from the calling program.

If the option start ¼ Nag_Warm has been chosen, lambda must point to a minimum of nþm elements
of memory. This memory will already be available if the options structure has been used in a previous
call to nag_opt_nlp_sparse (e04ugc) from the calling program, with start ¼ Nag_Cold and the same
values of n and m. If a previous call has not been made, sufficient memory must be allocated by the user.

When a ‘warm start’ is chosen lambda½j� 1� must contain a multiplier estimate for each nonlinear
constraint for j ¼ nþ 1,nþ 2,. . .,nþ ncnln. The remaining elements need not be set. If nothing is
known about the problem, or there is no wish to provide special information, the user may set
lambda½j� 1� ¼ 0 for j ¼ nþ 1,nþ 2,. . .,nþ ncnln.

On exit: a set of Lagrange multipliers for the bound constraints on the variables (reduced costs) and the
general constraints (shadow costs). More precisely, the first n elements contain the multipliers for the
bound constraints on the variables, the next ncnln elements contain the multipliers for the nonlinear
constraints F xð Þ (if any) and the next m� ncnln elements contain the multipliers for the linear constraints
Gx and the free row (if any).

– Integer i

On exit: the total number of minor iterations (summed over all major iterations).

– Integer i

On exit: the number of major iterations that have been performed in nag_opt_nlp_sparse (e04ugc).

– Integer i

On entry: the number of superbasic variables. It need not be specified if start ¼ Nag_Cold but must
retain its value from a previous call when start ¼ Nag_Warm.

Constraint: if start ¼ Nag_Warm, nsb � 0.

On exit: the final number of superbasic variables.

– Integer i

On exit: the number of calls to objfun.

– Integer i

On exit: the number of calls to confun.

11.3 Description of Printed Output

This section describes the intermediate printout and final printout produced by nag_opt_nlp_sparse
(e04ugc). The level of printed output can be controlled by the user with the structure members list,
print_deriv, print_level, minor_print_level, print_80ch, and outfile (see Section 11.2). If
list ¼ NagTrue then the parameter values to nag_opt_nlp_sparse (e04ugc) are listed, followed by the

e04ugc NAG C Library Manual

e04ugc.48 [NP3660/8]

result of any derivative check when print_deriv ¼ Nag_D_Print. The printout of results is then governed
by the values of print_80ch, print_level and minor_print_level. The default of
print_level ¼ Nag_Soln_Iter, minor_print_level ¼ Nag_NoPrint, and print_80ch ¼ NagTrue produces
a single line of output at each major iteration and the final result (see Section 5.1). This section describes
all of the possible other levels of results printout available from nag_opt_nlp_sparse (e04ugc).

If a simple derivative check, verify_grad ¼ Nag_SimpleCheck, is requested then a statement indicating
success or failure is given. The largest error found in the objective and the constraint Jacobian are also
output.

When a component derivative check (see the optional parameter verify_grad in Section 11.2) is selected,
the element with the largest relative error is identified for the objective and the constraint Jacobian.

If print_deriv ¼ Nag_D_Print then the following results are printed for each component:

x[j-1] the element of x.

dx[j-1] the finite difference interval.

Jacobian value the nonlinear Jacobian element.

g[j-1] the objective gradient element.

Difference approx. the finite difference approximation.

The indicator, OK or BAD?, states whether the derivative provided and the finite difference approximation
are in agreement. If the derivatives are believed to be in error nag_opt_nlp_sparse (e04ugc) will exit with
fail set to either NE_CON_DERIV_ERRORS or NE_OBJ_DERIV_ERRORS, depending on whether
the error was detected in the constraint Jacobian or in the objective gradient.

When print_level ¼ Nag_Iter, Nag_Soln_Iter or Nag_Soln_Iter_Full, and print_80ch ¼ NagFalse, the
following line of intermediate printout (� 120 characters) is sent at every major iteration to outfile. Unless
stated otherwise, the values of the quantities printed are those in effect on completion of the given iteration.

Major is the major iteration count.

Minor is the number of minor iterations required by the feasibility and optimality phases of
the QP subproblem. Generally, Minor will be 1 in the later iterations, since theoretical
analysis predicts that the correct active set will be identified near the solution (see
Section 10).

Step is the step taken along the computed search direction. On reasonably well-behaved
problems, the unit step will be taken as the solution is approached.

nObj is the number of times objfun has been called to evaluate the nonlinear part of the
objective function. Evaluations needed for the estimation of the gradients by finite
differences are not included. nObj is printed as a guide to the amount of work
required for the linesearch.

nCon is the number of times confun has been called to evaluate the nonlinear constraint
functions (not printed if ncnln is zero).

Merit is the value of the augmented Lagrangian merit function (6) at the current iterate. This
function will decrease at each iteration unless it was necessary to increase the penalty
parameters (see Section 10.1). As the solution is approached, Merit will converge to
the value of the objective function at the solution.

In elastic mode (see Section 10.2), the merit function is a composite function involving
the constraint violations weighted by the value of the optional parameter elastic_wt
(default value ¼ 1:0 or 100.0).

If there are no nonlinear constraints present, this entry contains Objective, the value
of the objective function f xð Þ. In this case, f xð Þ will decrease monotonically to its
optimal value.

Feasibl is the value of rowerr, the largest element of the scaled nonlinear constraint residual
vector defined in the description of the optional parameter major_feas_tol. The
solution is regarded as ‘feasible’ if Feasibl is less than (or equal to) major_feas_tol

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.49

(default value ¼
ffiffi
�

p
). Feasibl will be approximately zero in the neighbourhood of a

solution.

If there are no nonlinear constraints present, all iterates are feasible and this entry is
not printed.

Optimal is the value of maxgap, the largest element of the maximum complementarity gap
vector defined in the description of the optional parameter major_opt_tol. The
Lagrange multipliers are regarded as ‘optimal’ if Optimal is less than (or equal to)
major_opt_tol (default value ¼

ffiffi
�

p
). Optimal will be approximately zero in the

neighbourhood of a solution.

nS is the current number of superbasic variables.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian function (not printed if ncnln is zero).

LU is the number of non-zeros representing the basis factors L and U on completion of the
QP subproblem.

If there are nonlinear constraints present, the basis factorization B ¼ LU is computed
at the start of the first minor iteration. At this stage, LU ¼ lenLþ lenU, where lenL
is the number of subdiagonal elements in the columns of a lower triangular matrix and
lenU is the number of diagonal and superdiagonal elements in the rows of an upper
triangular matrix. As columns of B are replaced during the minor iterations, the value
of LU may fluctuate up or down (but in general will tend to increase). As the solution
is approached and the number of minor iterations required to solve each QP
subproblem decreases towards zero, LU will reflect the number of non-zeros in the LU
factors at the start of each QP subproblem.

If there are no nonlinear constraints present, refactorization is subject only to the value
of the optional parameter factor_freq (default value ¼ 50 or 100) and hence LU will
tend to increase between factorizations.

Swp is the number of columns of the basis matrix B that were swapped with columns of S
in order to improve the condition number of B (not printed if ncnln is zero). The

swaps are determined by an LU factorization of the rectangular matrix BS ¼ B Sð ÞT,
with stability being favoured more than sparsity.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian (not
printed if ncnln and nonln are both zero). It is the square of the ratio between the
largest and smallest diagonal elements of the upper triangular matrix R. This

constitutes a lower bound on the condition number of the matrix RTR that
approximates the reduced Hessian. The larger this number, the more difficult the
problem.

PD is a two-letter indication of the status of the convergence tests involving the feasibility
and optimality of the iterates defined in the descriptions of the optional parameters
major_feas_tol and major_opt_tol. Each letter is T if the test is satisfied, and F
otherwise. The tests indicate whether the values of Feasibl and Optimal are
sufficiently small. For example, TF or TT is printed if there are no nonlinear
constraints present (since all iterates are feasible).

M is printed if an extra evaluation of objfun and confun was needed in order to define an
acceptable positive-definite quasi-Newton update to the Hessian of the Lagrangian.
This modification is only performed when there are nonlinear constraints present.

m is printed if, in addition, it was also necessary to modify the update to include an
augmented Lagrangian term.

s is printed if a self-scaled BFGS (Broyden–Fletcher–Goldfarb–Shanno) update was
performed. This update is always used when the Hessian approximation is diagonal,
and hence always follows a Hessian reset.

e04ugc NAG C Library Manual

e04ugc.50 [NP3660/8]

S is printed if, in addition, it was also necessary to modify the self-scaled update in order
to maintain positive-definiteness.

n is printed if no positive-definite BFGS update could be found, in which case the
approximate Hessian is unchanged from the previous iteration.

r is printed if the approximate Hessian was reset after 10 consecutive major iterations in
which no BFGS update could be made. The diagonal elements of the approximate
Hessian are retained if at least one update has been performed since the last reset.
Otherwise, the approximate Hessian is reset to the identity matrix.

R is printed if the approximate Hessian has been reset by discarding all but its diagonal
elements. This reset will be forced periodically by the values of the optional
parameters hess_freq (default value ¼ 99999999) and hess_update (default value
¼ 20). However, it may also be necessary to reset an ill-conditioned Hessian from
time to time.

l is printed if the change in the variables was limited by the value of the optional
parameter major_step_lim (default value ¼ 2:0). If this output occurs frequently
during later iterations, it may be worthwhile increasing the value of major_step_lim.

c is printed if central differences have been used to compute the unknown elements of
the objective and constraint gradients. A switch to central differences is made if either
the linesearch gives a small step, or x is close to being optimal. In some cases, it may
be necessary to re-solve the QP subproblem with the central difference gradient and
Jacobian.

u is printed if the QP subproblem was unbounded.

t is printed if the minor iterations were terminated because the number of iterations
specified by the value of the optional parameter minor_iter_lim (default value ¼ 500)
was reached.

i is printed if the QP subproblem was infeasible when the function was not in elastic
mode. This event triggers the start of nonlinear elastic mode, which remains in effect
for all subsequent iterations. Once in elastic mode, the QP subproblems are associated
with the elastic problem (8) (see Section 10.2). It is also printed if the minimizer of
the elastic subproblem does not satisfy the linearized constraints when the function is
already in elastic mode. (In this case, a feasible point for the usual QP subproblem
may or may not exist.)

w is printed if a weak solution of the QP subproblem was found.

When minor_print_level ¼ Nag_Iter and print_80ch ¼ NagTrue, the following line of intermediate
printout (� 80 characters) is sent at every minor iteration to outfile. Unless stated otherwise, the values of
the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Step is the step taken along the computed search direction.

Ninf is the number of infeasibilities. This will not increase unless the iterations are in
elastic mode. Ninf will be zero during the optimality phase.

Sinf is the value of the sum of infeasibilities if Ninf is non-zero. This will be zero during
the optimality phase.

Objective is the value of the current QP objective function when Ninf is zero and the iterations
are not in elastic mode. The switch to elastic mode is indicated by a change in the
heading to Composite Obj (see below).

Composite Obj is the value of the composite objective function (9) when the iterations are in elastic
mode. This function will decrease monotonically at each iteration.

Norm rg is the Euclidean norm of the reduced gradient of the QP objective function. During
the optimality phase, this norm will be approximately zero after a unit step.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.51

When minor_print_level ¼ Nag_Iter and print_80ch ¼ NagFalse, the following line of intermediate
printout (� 120 characters) is sent at every minor iteration to outfile. Unless stated otherwise, the values
of the quantities printed are those in effect on completion of the given iteration.

In the description below, a ‘pricing’ operation is defined to be the process by which a nonbasic variable is
selected to become superbasic (in addition to those already in the superbasic set). If the problem is purely
linear, the variable selected will usually become basic immediately (unless it happens to reach its opposite
bound and return to the nonbasic set).

Itn is the iteration count.

pp is the partial price indicator. The variable selected by the last pricing operation came
from the pp-th partition of A and �I . Note that pp is reset to zero whenever the basis
is refactorized.

dj is the value of the reduced gradient (or reduced cost) for the variable selected by the
pricing operation at the start of the current iteration.

+SBS is the variable selected by the pricing operation to be added to the superbasic set.

-SBS is the variable chosen to leave the superbasic set. It has become basic if the entry
under -B is non-zero; otherwise it has become nonbasic.

-BS is the variable removed from the basis (if any) to become nonbasic.

-B is the variable removed from the basis (if any) to swap with a slack variable made
superbasic by the latest pricing operation. The swap is done to ensure that there are no
superbasic slacks.

Step is the value of the step length � taken along the current search direction p. The
variables x have just been changed to xþ �p. If a variable is made superbasic during
the current iteration (i.e., +SBS is positive), Step will be the step to the nearest bound.
During the optimality phase, the step can be greater than unity only if the reduced
Hessian is not positive-definite.

Pivot is the rth element of a vector y satisfying By ¼ aq whenever aq (the qth column of the
constraint matrix A �Ið Þ) replaces the rth column of the basis matrix B. Wherever
possible, Step is chosen so as to avoid extremely small values of Pivot (since they
may cause the basis to be nearly singular). In extreme cases, it may be necessary to

increase the value of the optional parameter pivot_tol (default value ¼ �0:67) to
exclude very small elements of y from consideration during the computation of Step.

Ninf is the number of infeasibilities. This will not increase unless the iterations are in
elastic mode. Ninf will be zero during the optimality phase.

Sinf/Objective is the value of the current objective function. If x is infeasible, Sinf gives the value
of the sum of infeasibilities at the start of the current iteration. It will usually decrease
at each non-zero value of Step, but may occasionally increase if the value of Ninf
decreases by a factor of 2 or more. However, in elastic mode this entry gives the
value of the composite objective function (9), which will decrease monotonically at
each iteration. If x is feasible, Objective is the value of the current QP objective
function.

L is the number of non-zeros in the basis factor L. Immediately after a basis
factorization B ¼ LU , this entry contains lenL. Further non-zeros are added to L
when various columns of B are later replaced. (Thus, L increases monotonically.)

U is the number of non-zeros in the basis factor U. Immediately after a basis
factorization B ¼ LU , this entry contains lenU. As columns of B are replaced, the
matrix U is maintained explicitly (in sparse form). The value of U may fluctuate up or
down; in general, it will tend to increase.

Ncp is the number of compressions required to recover workspace in the data structure for
U . This includes the number of compressions needed during the previous basis
factorization. Normally, Ncp should increase very slowly. If it does not,

e04ugc NAG C Library Manual

e04ugc.52 [NP3660/8]

nag_opt_nlp_sparse (e04ugc) will attempt to expand the internal workspace allocated
for the basis factors.

The following items are printed only if the problem is nonlinear or the superbasic set is non-empty (i.e., if
the current solution is nonbasic).

Norm rg is the Euclidean norm of the reduced gradient at the start of the current iteration.
During the optimality phase, this norm will be approximately zero after a unit step.

nS is the current number of superbasic variables.

Cond Hz is an estimate of the condition number of the reduced Hessian of the Lagrangian (not
printed if ncnln and nonln are both zero). It is the square of the ratio between the
largest and smallest diagonal elements of an upper triangular matrix R. This

constitutes a lower bound on the condition number of the matrix RTR that
approximates the reduced Hessian. The larger this number, the more difficult the
problem.

When print_level ¼ Nag_Soln_Iter_Full, the following lines of intermediate printout (� 120 characters)

are sent to outfile whenever the matrix B or BS ¼ B Sð ÞT is factorized. Gaussian elimination is used to

compute a sparse LU factorization of B or BS, where PLPT is a lower triangular matrix and PUQ is an
upper triangular matrix for some permutation matrices P and Q. The factorization is stabilized in the
manner described under the optional parameter lu_factor_tol (default value ¼ 5:0 or 100.0).

Note that BS may be factorized at the beginning of just some of the major iterations. It is immediately
followed by a factorization of B itself. Note also that factorizations can occur during the solution of a QP
problem.

Factorize is the factorization count.

Demand is a code giving the reason for the present factorization as follows:

Code Meaning
0 First LU factorization.
1 The number of updates reached the value of the optional parameter

factor_freq (default value ¼ 50 or 100).
2 The number of non-zeros in the updated factors has increased significantly.
7 Not enough storage to update factors.
10 Row residuals too large (see the description for the optional parameter

fcheck).
11 Ill-conditioning has caused inconsistent results.

Iteration is the iteration count.

Nonlinear is the number of nonlinear variables in the current basis B (not printed if BS is
factorized).

Linear is the number of linear variables in B (not printed if BS is factorized).

Slacks is the number of slack variables in B (not printed if BS is factorized).

Elems is the number of non-zeros in B (not printed if BS is factorized).

Density is the percentage non-zero density of B (not printed if BS is factorized). More

precisely, Density ¼ 100� Elems= Nonlinearþ Linearþ Slacksð Þ2.
Compressns is the number of times the data structure holding the partially factorized matrix needed

to be compressed, in order to recover unused workspace. Ideally, it should be zero.

Merit is the average Markowitz merit count for the elements chosen to be the diagonals of
PUQ. Each merit count is defined to be c� 1ð Þ r � 1ð Þ, where c and r are the number
of non-zeros in the column and row containing the element at the time it is selected to
be the next diagonal. Merit is the average of m such quantities. It gives an indication
of how much work was required to preserve sparsity during the factorization.

lenL is the number of non-zeros in L.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.53

lenU is the number of non-zeros in U .

Increase is the percentage increase in the number of non-zeros in L and U relative to the
number of non-zeros in B. More precisely,
Increase ¼ 100� lenLþ lenU� Elemsð Þ=Elems.

m is the number of rows in the problem. Note that m ¼ Utþ Ltþ bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax is the maximum subdiagonal element in the columns of L. This will not exceed the
value of the optional parameter lu_factor_tol (default value ¼ 5:0 or 100.0).

Bmax is the maximum non-zero element in B (not printed if BS is factorized).

BSmax is the maximum non-zero element in BS (not printed if B is factorized).

Umax is the maximum non-zero element in U , excluding elements of B that remain in U
unchanged. (For example, if a slack variable is in the basis, the corresponding row of
B will become a row of U without modification. Elements in such rows will not
contribute to Umax. If the basis is strictly triangular, none of the elements of B will
contribute, and Umax will be zero.)

Ideally, Umax should not be significantly larger than Bmax. If it is several orders of
magnitude larger, it may be advisable to reset the lu_factor_tol to some value nearer
unity.

Umax is not printed if BS is factorized.

Umin is the magnitude of the smallest diagonal element of PUQ.

Growth is the value of the ratio Umax=Bmax, which should not be too large.

Providing Lmax is not large (say < 10:0), the ratio max Bmax; Umaxð Þ=Umin is an
estimate of the condition number of B. If this number is extremely large, the basis is
nearly singular and some numerical difficulties might occur. (However, an effort is
made to avoid near-singularity by using slacks to replace columns of B that would
have made Umin extremely small, and the modified basis is refactorized.)

Lt is the number of triangular columns of B at the left of L.

bp is the size of the ‘bump’ or block to be factorized nontrivially after the triangular rows
and columns of B have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized has reached 0.6.

When print_level ¼ Nag_Soln_Iter_Full, and crash 6¼ Nag_NoCrash (default value crash ¼
Nag_NoCrash or Nag_CrashThreeTimes), the following lines of intermediate printout are sent to
outfile whenever start ¼ Nag_Cold. They refer to the number of columns selected by the Crash
procedure during each of several passes through A while searching for a triangular basis matrix.

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis, including those whose bounds are rather far
apart.

Preferred is the number of ‘preferred’ columns in the basis (i.e., state½j� 1� ¼ 3 for some j � n).
It will be a subset of the columns for which state½j� 1� ¼ 3 was specified.

Unit is the number of unit columns in the basis.

Double is the number of columns in the basis containing two non-zeros.

Triangle is the number of triangular columns in the basis with three (or more) non-zeros.

Pad is the number of slacks used to pad the basis (to make it a non-singular triangle).

e04ugc NAG C Library Manual

e04ugc.54 [NP3660/8]

When print_level ¼ Nag_Soln or Nag_Soln_Iter, and print_80ch ¼ NagFalse, the following lines of
final printout (� 120 characters) are sent to outfile.

Let xj denote the jth ‘column variable’, for j ¼ 1; 2; . . . ; n. We assume that a typical variable xj has bounds
� � xj � �.

The following describes the printout for each column (or variable).

Number is the column number j. (This is used internally to refer to xj in the intermediate
output.)

Column gives the name of xj.

State gives the state of xj relative to the bounds � and �. The various possible states are as
follows:

LL xj is nonbasic at its lower limit, �.

UL xj is nonbasic at its upper limit, �.

EQ xj is nonbasic and fixed at the value � ¼ �.

FR xj is nonbasic at some value strictly between its bounds: � < xj < �.

BS xj is basic. Usually � < xj < �.

SBS xj is superbasic. Usually � < xj < �.

A key is sometimes printed before State to give some additional information about
the state of xj. Note that unless the optional parameter scale_opt ¼ 0 (default value
¼ 1 or 2) is specified, the tests for assigning a key are applied to the variables of the
scaled problem.

A Alternative optimum possible. xj is nonbasic, but its reduced gradient is
essentially zero. This means that if xj were allowed to start moving away from
its current value, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change, giving
a genuine alternative solution. The values of the Lagrange multipliers might
also change.

D Degenerate. xj is basic, but it is equal to (or very close to) one of its bounds.

I Infeasible. xj is basic and is currently violating one of its bounds by more than

the value of the optional parameter minor_feas_tol (default value ¼
ffiffi
�

p
).

N Not precisely optimal. xj is nonbasic. Its reduced gradient is larger than the

value of the optional parameter major_feas_tol (default value ¼
ffiffi
�

p
).

Activity is the value of xj at the final iterate.

Obj Gradient is the value of gj at the final iterate. (If any xj is infeasible, gj is the gradient of the
sum of infeasibilities.)

Lower Limit is �, the lower bound specified for xj. None indicates that bl½j� 1� � �inf_bound.

Upper Limit is �, the upper bound specified for xj. None indicates that bu½j� 1� � inf_bound.

Reduced Gradnt is the value of dj at the final iterate.

m + j is the value of mþ j.

General linear constraints take the form l � Ax � u. Let aTi denote the ith row of A, for i ¼ 1; 2; . . . ; n.

The ith constraint is therefore of the form � � aTi x � �, and the value of aTi x is called the row activity.
Internally, the linear constraints take the form Ax� s ¼ 0, where the slack variables s should satisfy the
bounds l � s � u. For the ith ‘row’, it is the slack variable si that is directly available, and it is sometimes
convenient to refer to its state. Slacks may be basic or nonbasic (but not superbasic).

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.55

Nonlinear constraints � � Fi xð Þ þ aTi x � � are treated similarly, except that the row activity and degree of

infeasibility are computed directly from Fi xð Þ þ aTi x rather than from si.

The following describes the printout for each row (or constraint).

Number is the value of nþ i. (This is used internally to refer to si in the intermediate output.)

Row gives the name of the ith row.

State gives the state of the ith row relative to the bounds � and �. The various possible
states are as follows:

LL The row is at its lower limit, �.

UL The row is at its upper limit, �.

EQ The limits are the same � ¼ �ð Þ.
BS The constraint is not binding. si is basic.

A key is sometimes printed before State to give some additional information about
the state of si. Note that unless the optional parameter scale_opt ¼ 0 (default value
¼ 1 or 2) is specified, the tests for assigning a key are applied to the variables of the
scaled problem.

A Alternative optimum possible. si is nonbasic, but its reduced gradient is
essentially zero. This means that if si were allowed to start moving away from
its current value, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change, giving
a genuine alternative solution. The values of the dual variables (or Lagrange
multipliers) might also change.

D Degenerate. si is basic, but it is equal to (or very close to) one of its bounds.

I Infeasible. si is basic and is currently violating one of its bounds by more than
the value of the optional parameter minor_feas_tol (default value ¼

ffiffi
�

p
).

N Not precisely optimal. si is nonbasic. Its reduced gradient is larger than the
value of the optional parameter major_feas_tol (default value ¼

ffiffi
�

p
).

Activity is the value of aTxi (or Fi xð Þ þ aTi x for nonlinear rows) at the final iterate.

Slack Activity is the value by which the row differs from its nearest bound. (For the free row (if
any), it is set to Activity.)

Lower Limit is �, the lower bound specified for the ith row. None indicates that
bl½nþ i� 1� � �inf_bound.

Upper Limit is �, the upper bound specified for the ith row. None indicates that
bu½nþ i� 1� � inf_bound.

Dual Activity is the value of the dual variable �i.

i gives the index i of the ith row.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to this
precision.

12 Example 2 (EX2)

Example 2 (EX2) solves the same problem as Example 1 (EX1), described in Section 9, but shows the use
of certain optional parameters. EX2 shows option values being assigned directly within the program text
and by reading values from a data file. In addition to the data as read in Example 1, the data for this
example also includes a set of user-defined column and row names, and some option settings (see
Section 9.2). The options structure is initialized by nag_opt_init (e04xxc) and the crnames member is
assigned to the array of character strings into which the column and row names were read. Two options
are read from the data file by use of nag_opt_read (e04xyc). Note that, unlike for some other optimization

e04ugc NAG C Library Manual

e04ugc.56 [NP3660/8]

functions, optional parameters to nag_opt_nlp_sparse (e04ugc) are not checked inside nag_opt_read
(e04xyc); they are checked inside the main call to nag_opt_nlp_sparse (e04ugc).

On return from nag_opt_nlp_sparse (e04ugc), the solution is perturbed slightly and some further options
set, selecting a warm start and a reduced level of printout. nag_opt_nlp_sparse (e04ugc) is then called for
a second time. Finally, the memory freeing function nag_opt_free (e04xzc) is used to free the memory
assigned by nag_opt_nlp_sparse (e04ugc) to the pointers in the options structure. Users should not use the
standard C function free() for this purpose.

See Section 9 for the example program.

e04 – Minimizing or Maximizing a Function e04ugc

[NP3660/8] e04ugc.57 (last)

	e04ugc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	confun
	ncnln
	njnln
	nnzjac
	x
	conf
	conjac
	comm
	flag
	first
	last
	user
	iuser
	p

	objfun
	nonln
	x
	objf
	objgrad
	comm
	flag
	first
	last
	nf
	user
	iuser
	p

	n
	m
	ncnln
	nonln
	njnln
	iobj
	nnz
	a
	ha
	ka
	bl
	bu
	xs
	ninf
	sinf
	objf
	comm
	options
	fail
	5.1 Description of Printed Output

	6 Error Indicators and Warnings
	NE_CANNOT_CALCULATE
	NE_USER_STOP
	NE_CON_DERIV_ERRORS
	NE_OBJ_DERIV_ERRORS
	NE_2_INT_ARG_CONS
	NE_2_INT_OPT_ARG_CONS
	NE_3_INT_ARG_CONS
	NE_ALLOC_FAIL
	NE_ARRAY_CONS
	NE_BAD_PARAM
	NE_BOUND
	NE_BOUND_EQ
	NE_BOUND_EQ_LCON
	NE_BOUND_EQ_NLCON
	NE_BOUND_LCON
	NE_BOUND_NLCON
	NE_DUPLICATE_ELEMENT
	NE_INT_ARG_LT
	NE_INT_ARRAY_1
	NE_INT_ARRAY_2
	NE_INT_OPT_ARG_GT
	NE_INT_OPT_ARG_LT
	NE_INVALID_INT_RANGE_1
	NE_INVALID_INT_RANGE_2
	NE_INVALID_REAL_RANGE_E
	NE_INVALID_REAL_RANGE_EE
	NE_NAME_TOO_LONG
	NE_NOT_APPEND_FILE
	NE_NOT_CLOSE_FILE
	NE_OBJ_BOUND
	NE_OPT_NOT_INIT
	NE_OUT_OF_WORKSPACE
	NE_STATE_VAL

	7 Accuracy
	8 Further Comments
	8.1 Termination Criteria

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	10 Further Description
	10.1 Overview
	10.2 Treatment of Constraint Infeasibilities

	11 Optional Parameters
	11.1 Optional Parameter Checklist and Default Values
	11.2 Description of the Optional Arguments
	start
	list
	print_80ch
	print_level
	minor_print_level
	print_deriv
	outfile
	crnames
	obj_deriv
	con_deriv
	verify_grad
	obj_check_start
	obj_check_stop
	con_check_start
	con_check_stop
	f_diff_int
	c_diff_int
	crash
	expand_freq
	factor_freq
	fcheck
	hess_freq
	hess_update
	iter_lim
	major_iter_lim
	minor_iter_lim
	part_price
	scale_opt
	max_sb
	crash_tol
	elastic_wt
	f_prec
	inf_bound
	linesearch_tol
	lu_den_tol
	lu_sing_tol
	lu_factor_tol
	lu_update_tol
	major_feas_tol
	major_opt_tol
	major_step_lim
	minor_feas_tol
	minor_opt_tol
	nz_coef
	pivot_tol
	scale_tol
	unbounded_obj
	inf_step
	violation_limit
	deriv_linesearch
	feas_exit
	hess_storage
	direction
	state
	lambda
	iter
	major_iter
	nsb
	nf
	ncon

	11.3 Description of Printed Output

	12 Example 2 (EX2)

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

